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Lattice models (on a hypercubic lattice of dimension larger than or equal to 
three) with spins attaining a finite number of values and finite-range interactions 
at low temperatures are considered. The existence of rigid interfaces as well as of 
surface tension under appropriate conditions is proven and the properties of 
corresponding Gibbs states are investigated. 
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1. I N T R O D U C T I O N  

A theory describing phase diagrams and translation-invariant Gibbs states 
at low temperatures is now well developed for lattice models with finite- 
range interaction exhibiting only a finite number of ground states. Starting 
from the early papers of Peierls, Griffith, Dobrushin, and others, it found 
one of its most general expressions in the Pirogov-Sinai theory. (1'2) 

It is natural to ask about the existence (and description) of trans- 
lation-noninvariant Gibbs states in comparably general situations. The first 
rigorous result in that direction was Dobrushin's paper (3) concerning an 
interface between phases of opposite magnetization in the Ising model. His 
approach was further pursued and applied in a series of papers. (4)'4 
Dobrushin's strategy is to describe interfaces enforced by a suitable boun- 
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dary condition in terms of perturbations (called walls) of the flat interface. 
The corresponding Gibbs probability of interfaces thus forms in fact a 
certain (v-1) -d imensional  model (v >~ 3 is the dimension of the original 
lattice). 

The aim of the present paper is to show that, when combined with the 
results and methods of Pirogov and Sinai, ~) Dobrushin's approach gives a 
reasonably general tool for the study of translation-noninvariant Gibbs 
states. The Pirogov-Sinai theory was used in a similar situation in a study 
of surface tension for two-dimensional models. (6) Here we need more 
detailed information, since we have to control the thermodynamic limit of 
the Gibbs state as well as its correlations. 

When expressing the probability of an interface in terms of its energy, 
one has to take into account the corrections describing the influence of the 
surrounding pure phases. However, expanding the partition functions 
"above" and "below" an interface by means of corresponding contour 
models (Pirogov-Sinai theory), one gets an expression with corrections 
localized in the neighborhood of the interface. Thus, one finally gets a 
( v -  1)-dimensional model with "polymers" which are aggregates of walls 
and above-mentioned corrections. The study of probability of interfaces 
then turns into the study of a ( v -  1)-dimensional polymer model of "usual 
type" (polymers with only a hard-core interaction), which may be studied 
with the help of a cluster expansion. 5 

Let us notice that the present paper is devoted to the study of models 
with a unique type of "flat interface" (up to translations). However, the 
method may be extended without much change to cover more general 
models exhibiting the phenomenon of "phase transition inside the inter- 
face." This is briefly outlined in Ref. 8. The only novel feature is that even 
the resulting (v - 1 )-dimensional model is studied with the help of Pirogov-  
Sinai theory. 

The paper is organized as follows. 
In Section2 we introduce some basic concepts and adjust the 

geometrical notions from Ref. 3 to our more general situation. We for- 
mulate our main results about the existence of a translation-noninvariant 
Gibbs state in Theorem 1. Its properties are described in a more detailed 
fashion in Theorem 2. Theorem 3 concerns the surface tension. 

Section 3 is a brief review of the Pirogov-Sinai theory with some 
useful complements. The notation and abstract machinery of contour 
(polymer) models used here and throughout the paper are briefly 
recapitulated in Appendix B. 

Section 4 is devoted to the transcription of the partition function to a 

5 A similar approach was recently used in other contexts, e.g., in Ref. 7. 
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form suitable for the expression of probabilities of interfaces in terms of 
"aggregate models" as indicated in the above explanation of our strategy. 

In Section 5 we establish a condition of the type (B4) from Appen- 
dix B for aggregates; it enables us to apply the abstract theory of contour 
models for the aggregate model. 

Translating the information about  probabilities of aggregates into the 
language of walls (and interfaces) in Section 6, we prove Theorem 2. 
Theorem 1 follows from it with the help of some known facts about  Gibbs 
states. 

Section 7 contains a proof  of existence of surface tension (Theorem 3) 
as well as its explicit expression at low temperatures in Proposition 7.1. 

For the reader's convenience we include two Appendices. Appendix A 
contains a formulation and proofs of some "obvious" geometrical 
statements used throughout the paper. Appendix B (based essentially on 
Ref. 9) summarizes the results of the theory of contour models and 
corresponding cluster expansions. 

2. S E T T I N G  A N D  R E S U L T S  

2.1. Gibbs States  

We consider lattice models on a v-dimensional hypercubic lattice Z ~ 
with v an integer larger than 2. (Generalization to other lattices in 0~ ~ is 
possible). We always use the L~-metr ic  on l~: p( i , j )=max] i~ - j k ] .  In 
particular, a set A = Z" is R-connected if any two points i, j ~ A are connec- 
ted by a path {i ~) ..... i/k) ) ~ A, i ~ ) =  i, i ~k) = j ,  such that p(i ~t), i ~t- ~)) <~ R for 
every /=2, . . . ,k .  The R-components of a set in Z v are its maximal 
R-connected subsets. If R = 1, we omit it from the notation (connected, 
component,...). Whenever A ~, A2 = Z ~, their distance is 

d(A~, A2) -= inf{p(i, j )]i  ~ A1, j ~ A2 } 

(if A ~ = ~ ,  we define d(~3, A2)--~ for each A2cZv) .  We say that 
A1, A2 c Z v are R-distant if d(A1, Az) > R and denote A 1 c c A 2 whenever 
A~ and A~ = ZV\A 2 are distant. Finally, the diameter of A c Z v is diam A = 
sup{p(i , j) l i ,  j ~ A } .  

Considered lattice models will always have a finite set S of spin values 
attached to each lattice site ie7/v. Whenever V ~ 2  u, we denote X v = S  v 
and, in particular, X - - S  ~'. Let us make a convention that by A ~ Z v we 
shall always denote nonempty finite sets. A lattice model with a formal 
Hamiltonian H(X)=~CPA(X ) is defined by introducing an interaction 
r XA ~ J~ for each A c Z  ~. Denoting by Xv the restriction of x E X  to 
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Xv, we shall often write qo~(x) instead of q)A(XA). We suppose that the 
interaction is of finite range R, i.e., q0 A = 0 whenever diam A > R for some 
positive integer R. 

If VET/v is finite, V r  zEX, and VC=Y_v\V, we introduce the 
"physical" partition function 

Z(V'z;~H)= ~ e x p I - ~  ~ ~OA(XvXZv')] 
x v e X v  A n  Vr 

Whenever x, zEX  we shall denote the sumY~q~A(XvXZvc) either by 
Hv(xv[zv,) or by Hv(xRz) and call it the Hamiltonian in the volume V of 
the configuration x (Xv) under the boundary condition z (Zvc). 

Whenever x ~ J( and V c  Y~ is finite, we also introduce the energy in V 
of the configuration x by 

Ev(x ) = ~ (]) A(X) ]An V_____~l 
[AI 

where IA] denotes the number  of lattice sites in A. The usefulness of this 
notion stems from its additivity: Ev~v2(x)=Ev~(x)+Ev~(X) whenever 
V~ n V2 = ~ .  In particular, we write e~(x)= Eu}(x ) for i e  Y~ and note that 
if x is a translation-invariant configuration, then e(x)= e~(x) is its specific 
energy. 

If V c  Y~ is finite and nonempty, we define the kernel #~f(x[ z), called 
a Gibbs state in V, under the boundary condition Z v~ by the formula 

exp[  - ~Hv(x v [z)] 
f (x)P~f(dxlz)=~f(XvXZvc)  Z(Vlz;flH) 

J 
x v  

for every measurable bounded function f. Instead of #~f (x lz )  we some- 
times use the notation #v(XlZ) or #v(xlzv,). 

Let now V c  Z v be possibly infinite. We say that a probability measure 
# on X (equipped with the a-algebra generated by cylinder sets) is a Gibbs 
state in the volume V of a Hamiltonian H and at an inverse temperature/~ if 

whenever A finite c V and f is a measurable bounded function. The above 
definition applies in particular to V =  7/v. A Gibbs state # in V is a Gibbs 
state in V with a boundary condition z w e Xvc if 

#({xeXIxv~=Zv~})= l 
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Note that if V r  Z is finite, there is a unique Gibbs state in V under a 
boundary Zv,, namely the state/x for which ~ ( f ) = ~ f ( x ) # n v H ( d x l z  ). This 
justifies the term we used for the kernel #~v H. Later we use also the 
following: 

k e m m a  2.1. I f  V c  7/v is nonempty and either (i) V has only finite 
R-components, or (ii) V is a cylinder with a finite base, i.e., there exists a 
finite B c Z  v ~ such that V= {ieY_VlileZ,  (i2,..., iv)~B}, then there exists 
a unique Gibbs state yvH(dx]zv<) in V under a boundary condition 
Zv~E X w. 

A proof is straightforward for (i) and is given, e.g., in Ref. 10 for (ii). 

2.2.  I n t e r f a c e  

In the spirit of Pigorov-Sinai theory, the "excitations" of a con- 
figuration will be considered by comparing it with a chosen set of 
translation-invariant configurations {xl,..., xr}, r f> 2. A similar role for an 
investigation of an interface is played by a fixed configuration y12 fulfilling 
the following conditions: 

(i) y12 is horizontally translation-invariant: y12(i) = y~2(j) whenever 

il =Jl"  

(ii) yl2( i )=xl( i )  whenever il is large enough and y12(i)=x2(i) 
whenever - i~  is large enough. 

We shall often denote yi2 simply by y and we always reserve this letter for 
this particular configuration. 

Our goal is to investigate a Gibbs state, which could be constructed as 
a weak limit of Gibbs states in finite volumes V under the boundary 
condition 12 Yvc. In particular, we look for conditions on interactions {q~A} 
and (inverse) temperature /7 that would ensure that the considered Gibbs 
state is not translation-invariant. In a manner similar to Dobrushin, ~3) 
whose method we folow, we shall prove more about the structure of this 
Gibbs state. To describe it we use Pirogov-Sinai contours and generalize 
several "geometrical" notions from Ref. 3 to our situation. 

D e f i n i t i o n  2.1. Let x be a configuration, x ~ X. 

(i) A hypercube Cc7 /v  of diameter R is called good (for the 
configuration x) if Xc=xqc for some q =  1,..., r. Otherwise, it is a bad 
hypercube. The boundary B(x) is the union of all bad hypercubes of x. 

(ii) If F is a finite component of B(x), we call the pair 7 = (F, Xr) a 
contour of  x and F =  supp 7 its support. The pair 7 = (F, Xr) is called a 
contour if it is a contour of some x e X. Whenever 7 is a contour, we always 

822/50/3-4-19 
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denote its support by F. Denote also Ext 7 and Int 7 the (only) infinite 
component of 2~ \F  and the union of its finite components, respectively. 

Let us note that Er(x) does not depend on the choice of x E X with a 
contour 7, and we may and shall denote it by Er(7). Let us recall also that 
there exists a unique q E { 1 ..... r } such that there exists a configuration with 
XExty = (Xq)Extv which has 7 as its contour. This allows us to call 7 a 
q-contour. We shall use the subscript q to indicate this fact, denoting thus, 
e.g., the set of all q-contours by Au (cf. Appendix B). 

In the following we suppose that the boundary B(y 12) has a unique 
infinite component to be denoted by I(y)  or sometimes I0. Later (in the 
next subsection), we show that this assumption actually follows from our 
"wall Peierls condition." An interface can be defined for a class of 
configurations: 

D e f i n i t i o n  2.2. Let x be such that B(x) has a unique infinite com- 
ponent I(x), 2v\I(x)  has exactly two infinite R-components, and I (x ) \ I (y )  
has only finite R-components. Then l ( x ) =  (I(x),x1(x)) will be called a (y-) 
interface ofx. A pair D= (L xt) with I c 2  v and xlEX~ is a (y-) interface if 
there exists x e  X such that 0= 0(x). We always use I for support of l, 
i.e., H= (/, xl), and denote by Z[(I) [resp. Y;(I)]  the "upper" (resp. 
"lower") infinite R-component of 2v \ I  and by Int~ I its remaining (finite) 
R-components. Whenever VcY_ v we denote by VR the neighborhood 
VR= {ild(i, V ) < R +  1] and by Vq(I), q = l , 2 ,  the intersection 
Vq(I) = Z;(I) c~ VR. 

We prove in Appendix A that configurations differing from y only on 
a finite set have an interface (cf. Lema 4.1). 

Let Th denote the vertical shift by h E Z, i.e., Th(i) = (i1 + h, i2,..., i~) for 
iEZ  ~ and Th(X)(i)=x(T~l(i))  for x E X ,  Th(M, XM)=(Th(M),  Th(XM)) 
for M~77 ~, XMeXM. Whenever A c y -  ~, we shall denote ~ - I ( A ) =  
{ j = T h ( i ) I u E A ,  heY_}; ~z (A)=~- l (A )mTo  . We shall now introduce 
ceilings and walls of an interface ~. 

D e f i n i t i o n  2.3. Let 0 = ( / , x )  be an interface. A set C c I  is a 
column (of 0) if n - x ( { i } ) c ~ I =  C whenever iE C and there exists h(C)EZ 
such that C = ~ -1(C) c~ Th~c)(Io) and Xc = (Th(c~(Y))c. The number h(C) is 
called the height of C. A ceiling column is a column C such that CR c~ I -  
{ i E Y_~ ] d(i, C) < R + 1 } c~ I is a union of columns. A ceiling C of 0 is a com- 
ponent of the union of all ceiling columns. 

A pair ~ =  (IV, x w) is a wall of 0 if W = s u p p  w is a component of 
I \ ( J  (CI C is a ceiling of 0) and Xw= (X~)w. A pair ~ = (W, Xw) is called a 
wall if it is a wall of some interface. We denote the support of a wall 
always by W. 
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Let ~ be a wall. Then, for any interface (and a configuration) D(x) 
such that w is its wall, the number Ew(x)  is the same. We denote it by 
Ew(w). 

2.3. A Gibbs S t a t e  w i t h  an I n t e r f a c e  

Let us collect here our main assumption about interactions {~0A} (as 
well as inverse temperature/~): 

(I) Interactions {q~A } are translation-invariant and of finite range R. 

( C P )  Contour Peierls condition (GPS condition): There exists p~ > 0  
such that 

EF(~2) - -  E F ( x q )  ~ Pl 1]~'1 

whenever 7 = (F, Xr) is a q-contour. 

( W P )  Wall Peierls condition: There exists P2 > 0 such that 

Ew(w) - [E~(w)(y) + e([ W[ - I~( W)[ )] ~> P2 [Wt 

with either e = min { e(x u) }, e = e(x 1), or e = e(x 2), whenever ~ = ( W, x w) 
is a wall. 

(S )  The configurations x 1 and x 2 correspond to stable phases for 
interactions {(PA } at an inverse temperature /3. 

We recall the Pirogov Sinai theory, and the notion of stability in 
particular, in Section 3. Typically we have a situation familiar from the 
Pirogov-Sinai theory with a Hamiltonian H arising as a small perturbation 
of some H o complying with (I), (CP), and (WP), by an addition of certain 
"external fields." If this perturbation is small, the Peierls conditions (CP) 
and (WP) are again satisfied (perhaps with a slightly smaller Pl and P2)- 
Whenever /~ is large enough, the "external fields" may be adjusted to 
satisfy (S). 

Let us notice that the lhs in (WP) do not depend on other walls of the 
interface or on its vertical shift and thus one may supose, when verifying 
(WP), that ~v is an only wall of an interface. Notice also that the 
alternative inequalities in (WP) employing e(x ~) or e(x 2) instead of 
minq=l ...... e (x  q) may lead to a slightly larger P2 and thus to stronger 
statements in a (not a priori excluded) case with [W[ < [~(W)[. 

An immediate consequence of the wall Peierls condition is the above 
mentioned fact that B(y  12) has only one infinite component. Indeed, if it 
were not the case and B(y  12) consisted of at least two disjoint horizontal 
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layers, one could construct a new interface y'  by shifting one of those strips 
vertically in such a way that, assuming for brevity that all e(x q) are the 
same, 

IHv(y ' l  y ) -  g v ( y [  y)l <. cons t .L  v- 2 

for large hypercubes V with side L. 
The interface corresponding to the configuration Y'v x y w could have 

only one wall ~v for E ( ~ v ) ~ L  v 2, while the second term of the left-hand 
side in (WP) would be of order L v l, in clear contradiction with (WP). 

In some models the stability (S) at large fl is due to a symmetry 
between configurations x I and x 2. Included here in particular are models 
for which an interface has been studied before: the Ising model in Refs. 3, 4, 
and 11 and Widom-Rowlinson models in Ref. 4. 

It is instructive to analyze the case of the Ising antiferromagnet. 
Although a theorem about the existence of an interface has been 
announced, (~2) it seems, as we shall indicate below, that  it cannot (at least 
for the case with a nonvanishing external field) be considered as a 
straightforward generalization of the approach used for the ferromagnet. 
Strictly speaking, the Ising antiferromagnet does not belong to the class of 
models considered here, since its ground configurations are not translation- 
invariant. However, this failing may be remedied by partitioning the lattice 
into blocks of 2 v sites each, attaching a new spin variable attaining 2 2~ 
values to every block, and rewriting the interactions in an obvious way in 
terms of new block spins. The ground configurations x 1, x z expressed in 
terms of new block spins are already translation-invariant. However, what 
fails is the wall Peierls condition. Namely, there are two natural and 
different generic interfaces: the first corresponds to the configuration y~, 
for which, in terms of original spins, y i ( i ) = x l ( i )  whenever il > 1/2 and 
y~(i) = x2(i) otherwise; the second corresponds to the configuration yn, for 
which y n ( i ) = x l ( i )  whenever il > 3/2 and y n ( i ) =  x2(i) whenever il < 3/2. 
When expressed in terms of new block spins, their difference is not simply 
due to a vertical translation (in the block lattice). Indeed, while in one of 
them, blocks with configuration x ~ on them touch directly blocks with con- 
figuration x 2, in the second one they are separated by a layer of blocks 
with configuration differing on them from both x ~ and x 2. Choosing one of 
the interfaces of yI and yn as our y~2, all areas of the second interface 
should be considered as walls from the point of view of our definition. On 
the other hand, it is clear that one pays for them by an energy proportional 
only to their fringe; hence, the wall Peierls condition cannot be satisfied. 
Thus, we see that a natural way to study the Ising antiferromagnet is to 
model ceilings upon both those interfaces. However, to do it one should 
generalize the method to the case of two (or generally a finite number of) 
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different types of ceilings. The novel feature is that walls "remember" the 
type of ceiling outside of them and one has to take this fact into account 
when matching walls together. This is reminiscent of the situation with 
contours in the Pirogov-Sinai theory and actually it may be tackled in a 
similar way. While we are planning to study this case in a future 
publication, in the present article we confine ourselves to the case of one 
type of ceiling. 

Note, finally, that an attempt to include the Ising antiferromagnet by 
generalizing to a theory with periodic configurations x q, q = 1,..., r, would 
again lead to a theory with two types of ceilings. To see this, observe that 
since an odd translation transforms x 1 into x 2, a ceiling shifted together 
with the configuration vertically by an odd h ~ Z will be a natural ceiling 
only after changing the configuration on it. In other words, from the 
configuration of a wall one can infer whether the wall matches outside 
ceilings only on odd (resp. even) levels. Thus, we have two types of ceilings 
according to the parity of their level. 

Coming back to our situation, let us recall that if U is a cylinder with 
finite base, then there is a unique Gibbs state #~H(.Fy) in U under the 
boundary condition y v , =  y~2 by Lema 2.1(ii). We shall consider its weak 
limit over the net of cylinders U c  Y~ with finite bases ordered by inclusion 
(notation lim fin cyl). By the weak limit we mean a limit on all continuous 
functions on X, or, which is the same in our case, a limit on cylinder 
functions on AT, i.e., such q~: X--, ~ that there exists a finite A c ~  v such 
that if x, z ~ X ,  x A =ZA, then ~0(x)= (p(z) (q) is living in A). By a constant 
c=c(v ,  [SI, R) we shall always denote the constant from the estimate 
[Apendix B, formula (B.10)] on the number of contours of a given length 

1{7~ l ~ q l F 3 i ,  IF] =n}] ~<c" 

Let us introduce also a "thickness" of Io by t =  I~({i}) l /2R for any i z Z  v 
(notice that t f> 1). 

T h e o r e m  1. Let v~>3 and let H ~  {~0A} satisfy the conditions (I), 
(CP), and (WP). There exist constants c~=cl(v ,  ]S[ ,R , t )  and c2= 
c2(v, [SI, R, t) such that if f l p l>Cl ,  flP2>C2, V c Y -  v is a cylinder (not 
necessarily with a finite base), and {q~z } together with fl satisfy (S), then 

/~ = lira fin cyl yvH( �9 y) 

exists. 
Moreover, # is a Gibbs state in V and (i) is extremal in the convex set 

of Gibbs states in V, (ii) is horizontally translation-invariant, (iii) is not 
translation-invariant, and (iv) ~-almost every configuration x z X  has a 
y-interface l(x). 
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The above theorem is a direct consequence of Theorem 2, which 
includes a more detailed description of the state # [it is natural to denote it 
again by/t~vH(, t Y)]. Its proof is given in Section 6. 

Our actual estimates (surely not optimal ones!) lead to the values 

C1 
4 3 = +(-~+t)  log(2c) 

v l o g ( 2 R + l )  (~  ) 
q- ( 2 R + l ) "  F t + l  log2 

l o g [ 3 c ( v -  1)] 
+ t  + t  

2R 

c2 = 3 v + log(2c) + max (5, 2t + log 2 q- log [3c(v2_R - 1 ) ] )  

with the constant c (v -  1) steming from an upper bound [c(v-  1 )]" on the 
number of connected subsets in ~" -  1 of cardinality n containing a fixed site 
in Z ' -  1 [cf. the discussion of (B10) in Appendix B]. 

Let us remark that, as in Ref. 10, it can be shown that the state # also 
can be gained by a limit over rectangular parallelepipeds with the ratio of 
their sides within certain bounds. 

Referring to a situation typical for the application of the Pigorov- 
Sinai theory, which is explained in some detail in Section 3.1, we have the 
following straightforward Corollary of the above Theorem and 
Proposition 3.3. 

Corol lary.  Let v >/3 and let H o satisfy the assumptions (I), (CP), 
and (WP) with respect to a collection of its translation-invariant ground 
configurations {xl,..., x r} and let H s, s =  1,..., r - 1 ,  satisfying (I) be such 
that H,=Ho+3~#sH , completely removes the degeneracy (see Sec- 
tion 3.1). Let us denote K = - s u p ~ l  ...... 1 IlHsll with 

]IHL] = sup IE(i}(x)] 
i c Z  v 

and consider ~ < min(pff2K, pff(1 + 2t)K), f l ( P l  - -  2Ke) > cl, and f l (P2-  
(1 +2 t )  Kz) > c2. 

Then there is an ( r -2)-d imensional  surface S~ in the ball Uo(e)= 
{# ~ ~ r -  1 I Z I#sl < e} in the space of parameters, such that whenever # ~ S~, 
the Hamiltonian Hu together with the (inverse) temperature fl satisfies the 
conditions (I), (CP) with the constant P l - 2 K e ,  (WP) with the constant 
P2 - -  (1 -F 2t) Ke, and (S), and the statements of Theorems 1 and 2 hold. 
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2.4. Inter face in Terms of  an Admissible Family of 
Standard Wal ls  

To state Theorem 2, we shall need some additional notions. 

Defini t ion 2.4. A pair~=(W, xw) with W~ZV andxw~Xwisa 
standard wall if there exists an interface ~ such that w is its only wall. We 
denote by W the set of all standard walls. A family V of walls is compatible 
if n(supp ~1) and n(supp ~2) are distant whenever ~1,  w2 e V. The set of 
all compatible families of standard walls will be denoted by ~co .  If 
w=(W, xw) is a wall, then Io\n(W) has one infinite component, to be 
denoted by Exb0(n( W)); Inb0(n(W)) = Io\(n(W) w Ex t j c (W)) .  Let wl  and 
~2 be compatible walls, W~ = supp ~ ,  k -- 1, 2. We say that ~% is inside of 
~2 if n(W1)clntio(n(W=)). The set E(V) of external walls of a compatible 
family V of walls is a subset ~ c V of those ~ ~ V for which ~ '  va ~ implies 
n(W) ~ Extl0(n (IV')). The set of all families V ~ ~1/~o such that W(V)= V 
will be denoted by ~U e. A compatible family V of walls is admissible if 
every wall from V \ [ ( V )  is inside only a finite number of walls from V. The 
set of all admissible families of standard walls will be denoted by ~g#a. If k/ 
is a compatible family of walls, we denote supp V = U ~ v  supp w and 
IIVlr = Isupp Vl. 

We prove the following in Appendix A: 

kemma 2.2. (a) For  every wall w there is one and only one 
h = h ( w ) e 2  such that the shift Thw is in W. The shift T~w is called w in 
the standard position. 

(b) The mapping that ascribes to an interface I the collection of its 
walls in standard positions (W(-))  maps J ,  the set of all interface, into 
~co .  It is one to one from J ~ = W - I ( ~  ") (to be called the set of 
admissible interfaces) onto ~ .  

Let us note that the existence of just one type of ceiling is crucial for 
this lemma. 

2.5. A M o r e  Detai led Descript ion of  the Inter face Gibbs State  

Consider now the set Jfq(V) of all families 0 of mutually external 
q-contours such that s u p p 0 = c  V, with V c Z  v not necessarily finite. 
Recall that two contours ~1, ~2 are external if (Ext 71) ~ and (Ext 72) ~ are 
distant. Let us observe that the set of all subsets of ~q may be identified 
with the compact metric space {0, 1}~q. Endowing it with its Borel a- 
algebra, the set Xq(V)  may be identified with its measurable subspace. 
Similarly, the sets ~ c o  and ~W" ~ j a  may be considered as measurable 
subspaces of the space of subsets of the set of all standard walls. We denote 

J ( v )  = {l ~ J l n  = 0 (xvx  yvc) for some xv~Xv} 



766 Holickg, Koteck% and Zahradnik 

whenever V~7/v. If V is a cylinder, i.e., 7t ~(V)= V, then it is easy to see 
that 

J ( V ) = { 0 ~ J  ~ 2 ( n ) W ~ V R }  

Let l =  (L x~) be an interface. In Definition 2.2 we introduced the R- 
components Vl(I ), V2(I), and Int~ I of U. Let us consider Oq ~ X~(Vq(I)), 
q = 1, 2, and denote 

and jo the maximal subset of J which is (R+2)-dis tant  from J~. By 
X(], 0~, 02) we denote the set of configurations x ~ X such that D(x)= ~, and 
the set of external contours of x inside Vq(I) is Oq, q = 1, 2. Let us observe 
that X(], 0~, 02) is nonempty and whenever x~X(], 0~, 02), its restriction 
x(r to 77~\J ~ is fixed. The set jo has only finite R-components and thus, 
according to Lema 2.1(i), there is a unique Gibbs state in jo under the 
boundary condition x(j0)~. Let us denote it by #(-1 D, 01, 02) and note that 
#(X(B, O1, 02)[D, Oj,02)=l. The following theorem is a refinement of 
Theorem 1. 

T h e o r e m  2. Let the assumptions of Theorem 1 or its Corollary be 
satisfied. Then the limit 

p~H(. [ y) = lim fin cyl p~vH(. [ y) 

exists and there exist probabilities P~ on Ja(V)  for cylinders Vc7/v and 
Peq, v on ~ff~(V), q= 1, 2, for arbitrary V~ ~ ,  such that for each bounded, 
measurable function (0 on X 

(V) ](V~(I)) • ~ (  V2(1)) 
~(~[~, 01, 02) 

X EPel, vt(i)(dO1) @ P~, Vz(i)(d02)] 

Moreover, if we take 

(2.1) 

~ ~</~Pl-2 

log(2R + 1 )] 
~176  + 2 v ( - -~ ' -~v j 

1 t 
e5 ~< min(/~pl - Cl,/~P2 - c2) + ~ log(2c) + ~ log 2 
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then: (i) Denoting pv~(V) = Pr ~ J ( V )  IW(D) = V} whenever 
V e ~Kc~ and V is a cylinder, we have: 

(a) pv~(V) ~< e x p [ -  (2e3-  t log 2) []V[I ] 

(b) Ip{~(V)-p'( .2(V)l  ~ < 4 e x p [ - ( c h - t l o g 2 ) l [ V ] l  

-o3d(supp V, V~ + V2)] 

whenever V 1, V2 are cylinders, V 1 + V2 = (VlkVz)w ( V2k Vl ) is their sym- 
metric difference, and V ~/U~176 Vl c~ V2). 

(c) Ipr u v2 ) -  pC(v,) pr 

~< 3 exp[ - (cb - t log 2)]JV1 w V:  [] 

- �89 V1, supp V2] 

whenever V~ w Vz ~/4/~~ 

(ii) Similarly, denoting 

p;, v(O) = P;, v({O ~ : r  lO ~ 0}) 

whenever O e X q ( V )  and V c Z  v, q =  1, 2, we have: 

(a) peq, v(O)<~exp(-zl!OlJ ) 

0 e ~<exp[ NOH cod(supp O, V 1 -  V2) ] (b) ]Pu, v,( ) - P q ,  v2(O)[ -~: - 

whenever V1, V2 = 2 v, 0 E ~f'q( V1 ~ V2). 

(c) p~q v(O, wO2) -Pq ,  v(O,)p~,v(Oz)j 

~< exp [ - z I[ 01 w 02 IX -- cod(supp 01, supp 02 ) ] 

whenever 01 u 02 ~ ~q(V) .  

Remarks.  The probabilities P~,v are actually the contour model 
probabilities corresponding to pure stable phases and constructed in the 
Pirogov-Sinai theory (see Section 3, and Proposition 3.4 in particular, for 
more details). 

The most interesting case is when V= 7/". The formula (2.1) is also 
useful for cylinders V with finite base, since it may be combined with 
estimates (b) to control the speed of the convergence of #~v"('lY) when 
V I Z  v. 
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2.6. Sur face  Tension 

To formulate a statement about the existence of (the thermodynamic 
limit of) surface tension (interfacial free energy), let us consider the cylinder 
VB= {ieE~l(i2,... ,i~)eB} when B c E  ~-1 is finite. 

T h e o r e m  3. Let v~>3 and let /Y and H=-{qOA} satisfy the 
assumptions of Theorem 1 (or its Corollary). Then the limit 

1 
a = B : zv-tlim ~-~ lim fin cyl log 

van Hove 

X 
{Z(U] y~,2;/~H) 

[Z(E U ~ E~(Io)J\(Io),~ IX1; /~m) Z ( [  U o g~( Io ) ] \ ( Io )  R I x2;/~O)] -1 } 

exists and is 

o-= -/3 ~ q~(y)  Irc({i})l -~A 

A =(,o)~ Irc(A)I 
Ac~x({i}),r 

where i e 7/v is arbitrary and A satisfies the inequality 

IAI ~ [exp( - (5) + 21~(i)1 exp( - co)] 

with ~o, 05 from Theorem 2. 

Remarks. 

1. The limit B y  7/v-t is considered in the van Hove sense, 
I~BI/IBI--* O. An explicit formula for A is given in Proposition 7.1. 

2. The case v = 2 has to be studied by slightly different means and it 
was considered in Ref. 6, where, supposing the existence (proven for 
ferromamgnets) of the limit, the inequality ]aL >/K/3 was proven. 

In Ref. 6 a tacit assumption that the interaction {~0A} is reflection- 
invariant was used. It was needed, e.g., to prove 

E ~ f ( x ) - E  ~2~(x) =0 

in the formula (3.2) from Ref. 6. 

3. We use here a different normalization than that used in Ref. 6; 
namely, we use the normalizing factor 

z (  u,  ( Io)\ ( Io) R II x~; fill). Z( U2( Io)\ ( Io) R Ix2; H) ( , )  
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instead of the factor (used in Ref. 4) 

(Z( U[ xl; 13H). z( uI x2; 13H) ) ~/~ (**) 

The difference between ( , )  and (**) is not essential in the case when both 
the finite cylinders and the interaction are invariant under reflections with 
respect to I 0. In the general case the factor ( , )  sems to be more suitable 
[than (**)], since it satisfies the natural requirement that the value of a 
should not depend on the concrete "shape" of U. 

3. R E V I E W  OF T H E  P I R O G O V - S I N A I  T H E O R Y  

In this section we present notation and recall some statements of the 
Pirogov-Sinai theory (1'2) in a form used in our proofs. 

3.1. Par t i t ion  Funct ions and a C o n n e c t i o n  w i t h  
C o n t o u r  M o d e l s  

First, it is easy to verify a connection between the "diluted relative" 
partition function 

O ( V l x q ' ~  f i l l ) =  ~ exp {-13 ~A [ ~ g A ( X ) - -  

xVC = xqv c 
B(x) c ~  V 

used by Pirogov and Sinai and the "physical" 
Z(VI xq; 13H) introduced in Section 2.1. 

kemma 3.1. 
Then 

partition function 

Let V=YV be finite and V R={i jd( i ,  V)<R+I}. 

and 

O( Vl x~; pO) = exp[fle(xq) [ v{ ] expE-13Ev(x)] 
~v ~ = xqc 

B(x) c c  V 

Z(VlxU;flH)=expIH ~ ~o~(xq) IAc~ VRI 
A=vc IAI 

13e(xU) l VRI ] O( VR I xq; 13H) 

If 7 is a q-contour, Pirogov and Sinai introduce the "crystal" partition 
function of 7 by 

O(x) = {~} 
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The following proposition summarizes the main statements of the Pirogov- 
Sinai theory. For a short review of the theory of contour models ("polymer 
models"), see Appendix B. In the following we use the results and notations 
from it in a substantial way. Note in particular that by a contour 
functional ~b(7) we denote the weight ("fugacity") of the contour 7 and, 
thus the partition function ~q(Vltk,  b) of a contour model ~ with 
parameter b 7> 0 is defined as 

~fq(glcI),b)= E exp ( b  ~ Int 7 ) ~(r 
8 e ,X~(V) y �9 0(0) 

where q~(8)= l-Iv�9 45(7)- By the constant c we again denote the constant 
from the estimate (B10) on the number of contours of a given length. 
Introducing the constant 

c3 = c3(v, ISI, R) = 3 + log(2c) + [v log(2R + 1)]/(2R + 1 )v 

we have the following result: 

P r o p o s i t i o n  3.2. Let H-{q~A} satisfy the assumptions (I) and 
(CP) with respect to a collection of translation-invariant configurations 
{xl,..., xr}. Whenever /?Pl ~> c3, there exists for every q = 1,..., r a contour 
functional ~q and a parameter bq >/0 such that: 

(i) (/)q is a v-functional, [qSq(7)[~e-'lYl for each 7S~'~q, with 
V =tiP1 - 2 .  

(ii) For each 7 e N;q one has 

0(7; 3 H ) =  [exp(bq Lint 7[ )] q~q(7) ~q(Int 7; @q) 

and (thus) also 

O( V] xq; 3 0 )  : ~, q( V; (I)q, b q) 

for each finite V c  yr. 

(iii) minq= 1 ...... ha ~- O. 

(iv) The limit p (3H)  = lira[log Z(V[ x;/?H)]/[ V[, with V ," 7/v in the 
van Hove sense, exists for every x ~ J( (and does not depend on x) and 

bq - fle(x q) + p (~q)  = p(f lH) 

for each q = 1 ..... r. 

(v) Denoting 

~Oq(U) = log O( V[ xq; f i l l)  - [fle(x q) + p(3H)]  [U[ 
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we have 

with co = flpl 

Proof. 

IO~(u)l < {expE-~(2R + 1)"1 }10u/ 

- c 3  whenever U c Z  ~ and q~ {1,..., r}. 

For (i), (ii), and the equality bq-~e(xq)+p(qbq)=~ with c~ 
such that minq=i . . . . . .  bq= 0 see Refs. 1 and 2. For the computation of 
from (i) we used the version of Ref. 13 combined with estimates (B12) and 
(B4') from Theorem B.2. Considering then q with bq = 0 and observing that 
the limit 

lim log ~eq( V; qSq) 
I vI  - P ( ~ q )  

exists [Theorem B.2(iv)], the existence of the limit in (iv) as well as the 
equality c~=p(flH) follow from Lemma 3.1. The statement (v) plays an 
important role in this theory. It folows from the inequalities 

O( VI xq; fill) exp[ - fle(xq) l uI - -  p(flH) I UI ] 

= ~;eq(U; qSq, bq) exp{ - [/~e(x q) + p(flH)]FUJ} 

<~ Lrq( U; cb q) e x p [ ( - ~ e ( x  q) - p(fl H) + b q) l UJ ] 

~< exp[ - l%(x q) + bq + p( qSu) - p(~H) + d. 18UI ] 

= exp(d. [SUI) 

where we used the key estimate 

~ q (  U; (~)q) ~ exp[ p( OSq) l UJ + d J(?U[ ] 

with d =  exp[ -co(2R + 1 } v] following from Theorem B.2(iv). 
The Pigorov-Sinai theory also contains a statement about the full 

phase diagram in a neighborhood of a Hamiltonian H o with translation- 
invariant ground configurations xl,..., xL 

A configuration x ~ X  is called a ground configuration of H if 
~A [(PA(2") -- q)//(X)] ) 0 whenever z is a configuration differing from x only 
in a finite Vc2V: Xvc=Zvc. Consider now a Hamiltonian H0={q~ ~ 
satisfying (I) and a set of translation-invariant configurations {xl,..., x r} 
such that every x q, q= 1,...,r, is a ground configuration of H o. Let 
further H~_ = {~o~}, s =  1,..., r -  1, be additional Hamiltonians ("external 
fields") fulfilling (I) such that the Hamiltonian H , = H o + S ~ # ~ H ~ ,  
#=(#1  ..... #r I )~N r- l ,  completely removes the degeneracy of ground 
configuration of H0. Namely, denoting by e~(x u) the specific energy of x q 
with respect to H~, we have that the mapping 

# ~ e~(x q ) -  min eu(x m) 
m ~ 1,..,, r 
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maps the space of parameters N r 1 onto the entire boundary 

Or={b lb=(b l  ..... br), min b q =0 }  
q = l , . . . , r  

of the r-dimensional positive octant. Recalling that 

Ilgll = sup sup LE~i;(x)l 
i E Z  7v x E X  

we have the following result. 

Proposition 3.3. Let H0 satisfy the assumptions (I) and (CP) with 
respect to a collection of its translation-invariant ground configurations 
{xl,...,xr} and let Hs, s =  1,..., r - 1 ,  fulfilling (I) be such that H ~ =  
Ho+Y~#sHs completely removes the degeneracy. Let us denote 
K = s u p s - 1  . . . . . .  j llHsil and consider e<pl/2K and fl>~(c3)/(pl-2Ke ). 
Whenever # e Uo(e ) = {# e IW 1 [ 32 I#sl < 5}, the Hamiltonian H ,  satisfies 
the assumptions of Proposition 3.2. Then, denoting {hi(#),..., b r ( p )  } the 
corresponding parameters, the mapping # ~ { b l ( # )  ..... br(#)} is a 
homeomorphism of U0(e) into O~ such that the image of U o contains a 
neighborhood of O �9 O~. Moreover, to every bq(#)= 0 there corresponds 
an extremal translation-invariant Gibbs state of H ,  (at the inverse tem- 
perature /3); the number of all different extremal periodic Gibbs states of 
H~ equals the number of vanishing parameters bq(N). 

Proof, If H o satisfies (CP), then H o + Z #,H, satisfies (CP) with the 
constant p = p~ - 2K(~ I#,l) >~ pl - 2Ke whenever # �9 Up(e). Then one uses 
Proposition 3.2 and follows the proof of Main Theorem B in Ref. 1. For  a 
proof that the set of extremal Gibbs states corresponding t o  bq = 0 exhausts 
the set of all periodic extremal Gibbs states see Ref. 14. 

3.2. Descr ip t ion  of  S tab le  Phases 

We shall use a more detailed description of stable phases, i,e., Gibbs 
states corresponding to vanishing parameters bq=O. The following 
statement is essentially contained in Ref. 1 and especially in Ref. 2. An 
explicit expression of the form (3.1) appears in Ref. 15. 

Proposition 3.4. Let the assumptions o Proposition 3.2 be fulfilled 
and let qE {1,..., r} be such that bq=O and VcT/v. Then there exists a 
Gibbs state # in V and a probability measure Pq. vR on dUq(VR) such that 
for every bounded, measurable ~o one has 

#(q)) = ,Xfq(VR)12(~10) P~" vR(dO) (3.1) 
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where ~(.10) is the unique Gibbs state in J~ under the boundary 
condition xao(o),, where 

J~  ieYUld i, Int7 > R + I  

and x is such that O(x)= 0. Moreover: 

(i) # is a weak limit of #~'~(-]x q) over finite U c  V, ordered by 
inclusion. 

(ii) Denoting Yq(0, V) = {0 ~ Jl~(V) 10 = 0} and peq, v(O ) = 
v 2 Pq (Wq(O, V)) whenever 0 e 5fq(V), and taking r = flpl - 2 and 

v log(2R + 1 ) 
(~~ ( 2 R +  l y  

we have: 

(a) pq, v(O)<~e 311oll 

for every 0 ~ s((,~(V). 

(b) Ipq, v,(O)-pq, v~(O)l 

~< rl0t[ e x p E - r  1101[- o~d(supp 0, V~ + V2)] 

for every V1, V 2 ~ 2  v and O e a f  q(V~ c~ V2). 

(c) pp~,,,(ol voo2)- p;,v(o,) p~,v(o2)l 
~< I[01 u 02][ exp[ - r  1[01 u 021[ - cod(supp 01, supp 02)] 

whenever 01 va 02 e Yq(V). 

(iii) There exist :~ > 0 and K >  0 such that 

(a) Ii~v,(~o)-#v2(~o)l <~KIA I I1~011 expE-~d(A,  V1 + Va)] 

whenever (p is a cylinder function living in A [i.e., (p(x)= ~o(y) whenever 
XA = YA ]" 

(b) I#v(~O,Oz)-- #v(q~l) l~v((O2)[ 

<~ KIA, ~ A2] I1~o,II 11~o211 expl--c~d(A1, A2)] 

whenever ~ol, g02 are cylinder functions living in A~, A2, respectively. 

Proof. Let ~bq be the r-functional from Proposition 3.2. According to 
Theorem B.2(iii), there exists a measure  Pq. vR on J~q(VR) that recovers its 
correlation functions p ve(O]~q). Introducing a map af'q(VR)--+ X',~(VR) by 
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attributing to each 8eXq(VR)  the set of its external contours 
O(8)e~q(VR),  we may define the measure peq, VR on ~((q(VR) as the image 
of Pq. vR under this map. Let us observe that for finite U one has 

pq, t/(O) = ~q(O) ~(~'~q(U)\[[O]]) 
Zr(%(V)) 

= ~bq(0) exp E - ~ cbT(C )]  
C .cl c~ e,~q(U);C [ E 0 ] ] ~  

where [ [ 0 ] ] = { y e ~ q l  either 7t0 or there exists ~ e 0  such that 
supp 7 c  Int Y} (see Appendix B). Taking into account the estimate (B4') 
and the fact that 

Iv log(2__R+ 1) ] 
IICll ~<exp L (2R+ 1) ~ IICII 

since IJCII >~ (2R+ 1) ~, we get the bound 

.~ I,~(c)l e ~llcll ~ ~ I~(c)l IlCll e ~ ~< 1 
U~,~c ( s u p p  7 u I n t  "~) ~ i s u p p  C ~ i 

by similar reasoning as when proving (B.13). 
Hence, taking into account the positivity of ~bq(O) and the inequality 

leU-e~ I ~< max(e u, eV)lu-vl ,  one easily verifies (ii). 
To prove (i) and (3.1), let us consider a cylinder function ~0 living in 

A ~ 2 ~ and choose e > 0. We shall prove that for U =  V finite and large 
enough, 

P~, ~R(dO) ~o 

From Proposition 3.2(ii), Lemma 3.1, and the fact that bq=O, o n e  easily 
verifies that if U c 7/~ is finite, then 

Y'(0; ~bq) 
OEOU~(t/R) fffffq(UR; ~q) 

=-f~(t/R) /~(r ] 0) Pq, t/R) bt(cp ] 0) Pq, t:R(dO) 

Hence, to prove (3.2) means proving 

f~ ~t(~oLo)e~,t/~(dO)-f~ ~(r vR(dO) ~ell~oll (3.3) 
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for U large enough. Whenever 0 E Xq,  we shall consider a subset 0 (k) ~ 0 of 
those Y c 0 for which 171 < k. Denoting by #fq(A, k) the set {0 ~ ~r there 
exists y e0  such that Fr~A r  and ]Yl >k} ,  we get, using (ii)(a), the 
estimate 

f [#(q~ [ O) - I.t((P I O (k)) ] P~u, u(dO) ~ 2 II q~ II P~, u(Jfq(A, k)) 

~<2 I1~oll IAI e-~k~�88 

whenever Uc7/~, and k is large enough. Having chosen such k, the 
estimate (3.3) will be verified if we show that 

f~. t~(~olO(k)) Pq, v .(dO)- f~ c I~(~o[O) P;,v~(dO) ~<~elt~oll (3.4) 
q(UR) q(vR) 

for U large enough. Observing that p(~o I 0 (k)) is a cylindrical function living 
in Ak= {ieY~ld(i,  A ) < k }  [-i.e., if0~, 0 2 ~ J f  q are such that 0 lc~ ~q(Ak)= 
02 r~ Nq(Ak), then/~(~o [ 0] k)) = p(~o I 0~))]~ the estimate (3.4) follows from the 
weak convergence lim v . pe = P~ [Theorem B.2(iii)]. According to V q, U R q, V R 
(3.2), thus lim v/. v #~"(~o ] x%) exists and is equal to 

f~. ~(~o I o) ,..(do) P;, 
"~(vR) 

It is clearly a Gibbs state in V. Validity of (3.1) for all measurable, boun- 
ded ~0 then follows from the fact that both sides of (3.1) have unique exten- 
sions from bounded cylindrical functions to bounded measurable functions. 

Finally, to prove (iii), we first realize that replacing peq. v(O) in (ii) by 
Pq;V;A(O) -- v e - P q ( f f { q ( O ,  V;A)) with 

~,f~(0, V; A) = {0 ~ ofq(0, V)[V E 0\0 implies (supp Y ~ Int 7) c~ A = ~" } 

we get similar estimates: 

(a') p~.v;A(O)~exp(--v]]OH) 
e 0 e (b') ]Pq;m;A( )--Pq;V2;A(O)] 

~< Ir0tl max(pq, m;A(O), Pq, V2;A(O)) 

X exp[ -cod(supp 0 u V, V1 + 1/2)] 

0 pe (C ' )  P; V;AI~A2(O1 k")O2)--Pq,  V;A,( i )  q, V;A2(02)I 

II0~ u 02 II max(pq. V.A, ~ A2(O~ U 02), pq. V;A~(01 ) p~, V;A2(Oz)) 

X exp[--~d(A1 u supp 01, A2 w supp 02)] 

822/50/3 4-20 
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To prove (iii)(a), we notice that v e e-OJk Pq (ff{'q(A, k)) <~ [AI and realizing that 
0 e S q \ ~ f q ( A ,  k) such that (supp 7 w Int 7) c~ A r ~ for each 7 e 0 implies 
It011 ~< tAlk ~, we get 

~ 2  llq~ll IAI e x p ( - ~ k )  

+ ~ ~(~o I 0)Ipq, v,; ~(0) - p~, v~, A(0)I 
o ~ X~\~](A, k) 

? ~ 0 ~ ( supp  ? ~ l n t  7) c~ A r ~ 

~<211~ll IAI e x p ( - ~ k ) +  I/~oll LAI k~exp{-m[d(A, VI+ V2)-2k] } 

x ~ [Pq, v,; A(O) + Pq, v=; A(O)] 
o ~ :e-~\~(A, k) 

7 ~ 0 ~ ( supp  7 w In t  y) c~ A ~ ~ 

~< IIq~/ IAI (2 e x p ( - o k )  + 2k u exp{ -co[d(A, V1 + V2) - 2k] }) 

The last inequality follows upon realizing that the sets oU~(0, V; A) are 
disjoint for different 0 ~ OUq\Jg~(A, k) such that (supp 7 w Int 7) c~ A r 
for every 7 e 0. Taking k = �89 V1 + V2), we get the desired estimate. 

The estimate (iii)(b) is proved in a similar way, using (ii)(c'). 

4. PROBABILISTIES OF INTERFACES IN T E R M S  OF A 
C O N T O U R  M O D E L  

In this section we introduce certain new partition functions 2 obtained 
from Z by dividing it by suitable "normalizing" factors. The advantage of 
these new partition functions will be the possibility of rewriting them in a 
form very close to that one used in contour models, such, moreover, that 
the "contours" [these will be defined as some "aggregates" of walls and 
clusters of 1- (2-) contours]  will "live" near I 0, i.e., an essentially ( v - 1 ) -  
dimensional contour model will be obtained. 

In Section 4.1, we define the normalized partition functions Z and 
rewrite them in Lemma 4.4. In Section 4.2, we pass to an infinite cylindrical 
volume. We define the notion of an aggregate and formulate and prove 
Lemma 4.9. 

4.1. Expression in Terms of Walls 

In this subsection V c Z  v will always be a finite volume. In Appen- 
dix A we prove the following result: 

L e m m a  4.1. Let v >~ 2 and let xi = yi except for finitely many ie  Z v. 
Then x has an interface. 
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Note that whenever I = (/, xl) is an interface of a configuration x that 
differs from y only on V, then 1 ~ r  (cf. Section 2.5). Let us denote by 
Int(I) the union of finite components Int~(I) of the complement of supp(l) 
and recall that by V~(I), V2(I) we denoted the intersection of Y_~(l), Y~2(I), 
respectively, with VR. We note also that for any ~ there is m(~)~ {1 ..... r} 
such that x~=x m~=) whenever i~Int=(I) and d(i,I)<~R+l or i~ I  and 
d(i, ~ Int~(I)) ~< R -  1. It follows from this observation that Eu(x)  depends 
only on x~ whenever x is a configuration such that l(x) = (/, x~) and U =  L 
We use the notation Eu(l) in such cases. Suppressing/~H in the following 
notation, we have the following result: 

k e m m a  4.2. Z(VIy)=~I~j~v)Z( I ,  Vly), where 

Z(I, V l y ) = e x p [ - f l E l ~ v , ( l ) + f l  ~ q~A(Y) ]Am VR~ 
A ~ V  c I A ] 

- 2 ~e(xq)lv~(I)l 1-[ O(V~(I) lx q) 
q=l q=l 

x 1~ exp[  -~e(x  ~(~)) linty(I)[ ] O(Int~(I) lx m(=~) 
c~ 

ProoL We choose an interface 1 = (I, xz) e J ( V )  and consider any x 
with 1 -- l(x). One proves Lemma 4.2 easily using the equalities 

Hv(x)  = E v . ( x ) -  ~ ~oA(x) - -  
A c  V c 

A ~ V R ~  

= Elm vR(X) + Ev~(~)(x) 

IA c~ VRI 
rAI 

"~ EV2(I)(X ) -~ EInt(/)~ vR(X ) __ ~ (pA(X) IA o VR ] 
~ = v ,  [AI 

A r~ VRV~fZ5 

and Lemmas 3.1 and 4.1. 
Now we shall extract from Z(I, V] y) some terms that do not depend 

on the interface 1. 
Let us denote Vqo = Vq(l(y)) and oqvR = ~VR n OVqo, q = 1, 2. If C is 

a cluster, we always write C instead of supp(C) (see Appendix B for 
corresponding definitions). We write C,q if there are i, j e C  such that 
[ i - j [= l ,  i~OqVR, jGVcR. Let us put . ~ q ( C ) = I  if C,q and Zq(C)=O 
otherwise. Let 1 o = (Io, Yt0) = (I(y) Yt(y)). 

Before continuing in the expression of the partition sum we should 
emphasize that we suppose that the assumptions (I), (CP), (WP), and (S) 
are satisfied. Since we shall rely on the Pirogov-Sinai theory, we always 
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suppose that the assumptions of Proposition 3.2 are fulfilled. In particular, 
we suppose that the inequality ~p~>~c3 holds. The following lemma is 
based on the fundamental expression (B2): 

k e m m a  4.3. If D e J(V) ,  one has 

z(u, Wl y) 

N(VI y) 

where 

- 2(1,  Vl y)  

= exp{ -p(~H)( l ln  W~l - Iio ~ W~l) 

-/~[E,~, vR(l) - E1o~ v,(lo)] + ~ ~Um(~)(Int~(I)) 
ct 

I E E (I)Tq( c ) ICt'-) Vql IC-(~-VRI~ 
q=l C~,Z/~ 1 {el Zq(C) ICI J 

N( VI y) = N~( VI y). Nlo( VI y). N~( Vt y) 

with the "volume term" 

N~(VI y) = exp[p(~H) lV] ] 

the "surface term" 

N~(VI y) = exp [p(~H) IVR\ VI + P ~ ~0A(y) IA c~ VRq_____Jl 
L A=vc IAI 
2 ~C/ ] 

q = l  C ~ , ,~ q 

C,q 
and the term extracted from Z to get the comparison with the flat interface 
Do is 

N0o(VI y) = exp[ -p(/3H)I no m VRI -/~E,0 ~ vR(0o)-I 

Proof. One substitutes Zc:c= vq(l) q~qT(C) 
according to Proposition 3.2(ii) and (B2), 

for log O(Vq(I)lx q) 

-~ p ( ~ H ) I V ~ ( I ) I  - Z ,~ (0 )  IC r", Vql 
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for - f le(xq)l  Vq(I)l according to Proposition 3.2(iv) and (B11), and 

exp [0m(~)(Int~(I))] 

for 
O(Int=(I) l x m(=)) exp[- - f le(x m(~) ) IInt~(I)l + p ( f l g )  IInt=( I)t ] 

according to Proposition 3.2(iv). 
We use the notation 

E ( w )  = flKEvr - E,~(w)(Do) ) + pKflg)KI WI -- Ire(W)l) + ~ ~'m(~)(Int~(W)) 

The notation Int~(W) stands for Int~(I) if c~ e N(W) = {~11nt~(I)is a finite 
component of W ~} whenever W is the support of a wall of ] with the sup- 
por t / .  It follows from the geometrical structure of walls (Lemma A.3) that 
{N(W)} form a disjoint decomposition of the set of all c~ used as indices in 
the notation of components Int~(1) of Int(I). Using this notation, one 
immediately gets from Lemma 4.3 the following result: 

Lemma 4.4. {2 
2(D, V l y ) =  ~ e x p [ - E ( w ) ]  exp - ~ ~ 45,(c)r 

w ~ ( ~ )  q =  1 C ~ ~)gq 

C c~ I , / -  .~J 

[jc vql ic2.v.q  
x ICl zq(c) [CI J ]  

for an ~=(I,  w l ) e J ( V ) .  
To be more precise, we notice that W c  VR for a wall of an interface 

0 e J ( V )  and therefore 

E(~) =/~(E~ ~(O) - E~(~ ~ ~(~o)) 

+ p( f lH)( I  W n  VR[ - I~(W) c~ VRI ) 

+ Z 0m(~)(Int~(W) c~ VR) 

and then use Lemma 4.3. 

4.2. Expression in Terms of  Families of  Standard Aggregates  

Now we pass from the case of a finite volume to an investigation of a 
cylindrical volume V with a finite basis B =  Z v. Let us note that since 
#~f(-[ y) is unique [-Lemma 2.1(ii)], we have 

lim p~H(. [ y) = #~vU(. [ y) 
U / "  V 
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where we consider the weak limit over the directed set of finite volumes 
U=V. 

Let us consider a finite, nonempty U = V. 

k e m m a  4.5. Let ~p,~c~ and ~p2>~c4=c4(v, IS[,R)=3~+5+ 
log(2c). Then: 

(a) There exists KB: J ( V ) ~  R such that 2(~, U[ y)<~KB(I) for any 
e J ( U )  with ZD~.~(v) K~(I) < ~.  

(b) There exists a finite limit limfin cyl U ~ v2(~, UI y) and it equals 

( 

Z'(H, V] y ) - - exp  ~ -  
k ~ e w ( D )  

2 

- Z  E 
q = l  C e ~  1 

C c~ I ~ ;ZJ 

where Vq, )~q are defined as before. 

(c) 

E(~)  

~(c)I'CclV' zq(c) lC~ VRllc~]} 

The probabilities P{  of interfaces from J ( U )  defined by 

2(1, uI y) 
~'({xl ~(~)= l}ly)= P~(~) Z~,~,~(~ 2(~', uI y) 

converge to a probability on J ( V )  (to be denoted by P{)  which is defined 
by 2(n, VI y), i.e., 

P.r = 
2(0, vl y) 

Proof. We see from Proposition 3.2(iv) that for any q e  {1 ..... r} 

E ( ~ )  = ~ ( E w ( ~ )  - E~(w)(Io)-  e(xq)[h WI - ]~(W)I ] 

+ ~  @m(~)(Int~(W)) + [p(Cbq)+bq][lWI- I~z(W)l ] (4.1) 

Let us notice that, according to Proposition 3.2(i), the assumptions of 
Theorem B.2 are satisfied for /3p1>3+log(2c) .  Thus, we can use the 
estimates (B l l )  and (B4') to get [p(~bq)l ~< 1. According to Proposition 
3.2(iv), the sum ~ ]~m(~)(Int~(W))] can be estimated by Z~ ]~ Int~(W)[. 
Since for each element i of 3 Int~(W) at least one of its 3 v -  1 neighbors 
belongs to W, we have Z~ ]0 Into(W)] ~< 3v[W[. 

If we consider the cases ] W ] -  [~(W)[ >t0 and ~<0 separately, we get 
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[considering in (4.1) such q that e(X q) = min, e(x ~) or bq = 0, respectively] 
the inequality 

E(w) >/fl(Ew(w) - E~w)(Ho) - rain e(xq)[J WI - In( W)I ]) 
q 

-3"I w [ -  I J w f -  I~(W)l I 

Obviously, minqe(X q) can be supplied by e(x 1) or e(x 2) in the last 
inequality. Now the "Peierls condition" (WP) can be applied and one gets 

E(~) >~ (t ip2-3 v) IW] -  I I W I -  I~(W)l I 

Using the expression for LT(D, U] y) from Lemma 4.4, we obtain the 
inequality 

2(1, U, y) ~<exp { -  ~ [ ( f l p 2 - 3 " ) , W , - l l W , - , n ( W ) , , ] }  

• exp(4 flc~ URI) 

with the help of the estimate (Bll) again. We may write 

Z [rml-ln(W)l]+lloC~URt 

instead of [Ic~ UR[ and conclude that 

Z(D, U] y) ~<exp { -  ~ [ ( f lp2-a~) ,W, -5 ,W,]}exp(4 , IonUn, )  
w~ W(fI) 

=- K,(I) 

b e c a u s e  

4([ w l -  I~(W)l)+11 wI-  I~(W)l I ~< 51Wl 

Obviously K~(I) depends on B, Io, and R, but actually not on U. The sum 
can be bounded in the following way: 

Ka(l) 
~ . ~ r  

~< exp(4 II0 c~ Vnt) II Z 
i e loc~  V R w ~ V ~  

e x p [ -  (tiP2 - 3" - 5)lml ] 

The support of walls are connected sets and therefore we can use the 
estimate already used for contours: 

l{w I W~i, IWl =n}[ ~<c" 



782 Holick% Koteck% and Zahradnik 

Hence 

if 

E 
i E W  

e x p [ -  (/~p= - 3 ~ - 5)IWI ] 

<~ s c"exp[-(/3Pz-3~-5)n] 
n = R  v 

~< {c e x p [ -  (/3p2- 3 ~ -  5)] }R~< 1 
1 - c exp[ -(/3P2 - 3 ~ -  5)] 

/302 >~ log(2c) + 3 v + 5 

We introduced the concepts of walls, standard walls, and admissible 
families of walls in Definitions 2.3 and 2.4. Let us introduce the notation 
W(V) for the set of all standard walls with supports contained in VR, and 
the notation ~/ ' a (g )  for the set of all admissible families V ~ ~/(V) of 
standard walls. 

We shall use Lemma 2.2 with the following trivial supplement. 

k e m m a  4.6. The mapping W(.): J--,~cK c~ from Lemma2.2 
satisfies the equality W(J (V) )  = ~K=(V). 

Our next step will be to rewrite 2(1, V[ y) as a sum over triplets T = 
(To, Y I , T 2 ) e Y ( V  ) defined so that T0~cra('Y)(V), ~-I,T= are finite 
subsets of j~ff~l(,f) or jg-~l(,f), respectively, and the supports of elements of 
Tq, q =  1, 2, intersect VR and /(To), i.e., the suport of the only interface 
l(To) determined by To. Let us use J -  instead of ~-(2U), and let us agree to 
use Tq, q = 0, 1, 2, in the above meaning whenever T e Y-. The following 
lemma yields a base for rewriting Z( V[ y) in a form similar to the partition 
of some contour model. 

L e m m a  4.7. 
I e J ( V )  that 

2(~, vl y)= 

where 

Under the assumptions of Lemma 4.5, one gets for 

2 

FI E FI 11 
weYO=W(I) ~r q=l CeTq 

Icl I c - - - - r -  - ~  

whenever C ~ ~ql~ 
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Proof We use Lemma 4.5(b). According to Lemma 4.6, we know 
that W ( J ( V ) ) =  W(V). Therefore, it remains to prove the equality 

2 IC exp - 2 2 q~r(C) [ICnVq(I)l r~VRI]~ 
L z4c) Icl J] 

2 

: s 1-I 
(Y0=W(I) ,YI ,~-2)ec~(V)  q = l  Ce~-q 

This equality follows from the observation that 

e x p ( ;  a=)= r[ [ ( e x p a , , - l ) + l ] =  ~ I ]  ( e x p a , - l )  
\ n ~ N  n ~ N  K ~  Nfinite n ~ K  

for countable N if ~2 la=j < ~ .  The inequality Zq, C [q~qr(C)[ 1['"][ < 4  
follows from (B4'). 

The set 

0 C ~ I  C~T2 

is called the support of T -- (To, ?-1, Y2) E 3"- and is denoted by supp(T) or 
simply by T. 

Let T e J ( V )  and a = ( % ,  al,a2), where a o c T o ,  al c T 1 ,  a 2 c  T2 are 
such that 

0 C ~ a l  C c a 2  

is a connected component of n(supp(T)). Then we say that a is an 
aggregate of T. The triplet (%, al, a2) is called an aggregate (in V) if it is 
an aggregate of some triplet from Y (3-(V)). We again agree that %, al, 
% have the above meaning whenever a is an aggregate and we denote the 
support of a by A. 

If a is the only agrregate of a triplet, a is called a standard aggregate. 
The set of all standard aggregates from J ( V )  is denoted by A(V). We use 
the notation ~(V)  for the set of finite subsets of A(V) consisting of 
standard aggregates such that for any two of them, say a, a, the set 
n(supp(a)) • n(supp)~)) is disconnected. 

The proof of the following geometrical assertion is scetched in 
Appendix A. 

Lomrna 4.8. (a) For any aggregate a = ( a i ,  al,  a j  of T e J - ( V )  
there is one and only one h = h ( a ) ~ Z  such that the shift 



784 Holick~, Koteck% and Zahradnik 

T~a- ({T~wlweao}, {ThClCeal}, {T~CICaa~})is in N(V). The shift 
Tha is called a in the standard position. 

(b) The mapping that ascribes to a triplet T e Y(V) its aggregates in 
standard positions is a one-to-one mapping (N(-)) from 3 ( V )  onto t~(V). 

Finally, we express 2(1, VI y) in terms of certain contour model in the 
sense of the abstract definition from Appendix B. The assertions of the 
following lemma are immediate consequences of Lemmas 4.7 and 4.8. 

k o m m a  4.9. Let us denote 

2 

Tv(a) = [ I e  e(,,, [ I  l-I fq,,(=o)(C) 
w e a  0 q = l  C e a q  

whenever a a &(V) is a standard aggregate, and recall that V is a cylinder 
set with a finite base. Then, under the assumptions of Lemma 4.5, one has: 

(a) Z(VI y;/~H) = ~(/~(V); Tv) 

where 

2(v) y;/~H) = 
Z( VI y; [IH) 

N(VI y) 

[-see Lemma 4.3 for the definition of N(VI y)] and 

(cf. Appendix B). 

(b) P,r = ~ p~(v)(~; Tv) 
~ e ~ ( v )  

where P Jr is the probability defined in Lemma 4.5 and 

p~(v)(5; ~v)=[ I-I Tv(5)J/~(A(V); Tv) 

for ~ e ~(V)  (cf. Appendix B). 

When proving Lemma 4.9 from Lemmas 4.7 and 4.8, we use the obser- 
vation that if T e Y(V) and a is an aggregate of Y in standard position 
[eN(]-)] ,  then f~<jia0)(C)= fqj(r0)(C) for C s aq, q = 1, 2, and ~ = The for 
the only h e ~ such that Tha is an aggregate of T. We use this fact without 
further comment in subsequent sections. 



Lat t ice Mode ls  at Low Temperatures 785 

5. STUDY OF THE AGGREGATE CONTOUR MODEL 

In Lemma 4.9 we rewrote both z~(l, V(y) and P~(I) in terms of a con- 
tour model with aggregates playing the role of contours and with the con- 
tour functional ~u v for the cylindrical volume V with finite base. However, 
these functionals depend on V (for aggregates touching V') and this could 
cause some trouble when studying the limit over V's. One observes easily 
that the definition o f f }  ~, and thus also of 5 uv, can be directly transfered to 
the case of arbitrary cylindrical volume V. Therefore, we may and shall use 
~v  for any cylindrical subset V of 7/~, for example, 7/~ itself. In Lemma 5.2 
we show that the assumptions of the functionals 7 tv needed for an 
application of Theorem B.1 are fulfilled. Moreover, it will turn out that the 
corresponding inequalities are independent of V. Proposition 5.3 is a direct 
application of Theorem B.1. 

5.1. Contour Functionals qjv 

Let us recall that, given a cylindrical volume V in 7/v, the functional 
~uv is defined by the equality (a e/~) 

q ~uv(a)=exp - ~ E(w) l-I [ I  fv,,(=0~(C) 
~,w ~ aO q = l  C ~ a q  

where 

Ic - 1  fq. l (C) =exp -~bqr(C)L~lCC~lclVq(I)l - xq(C) [ClC~ VRI]~jj 

where C ~ ~ffq~ and I is the support of some interface 1 ~ J (V) .  
The assumptions of Theorem B. 1 for the functionals gtv are verified in 

Lemma 5.2. For its proof we need the following estimate. 

L e m m a  5.1. Let fit01 ~ C 3. Then 

Z 
i E C  

I fqw,,(C)l exp[co /e l  ] ~ K 

whenever 

2 + log 2 log x 
(2) ~ f l  p l - -  C 3 -~ (2R+ 1) v (2R+ 1) v 

and ~c ~< 2e 2, q = 1 or 2, V is a cylindrical volume in Z v, ! is the support of 
some interface I E J (V) ,  and i ~ Z v. 
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Proof. Taking into account that 

~/'qV(C) exp(o5 IJ C II ) ~< ] 

C ~ i  

for (D=fl/)I--C3 according to Proposition 3.2 and TheoremB.2, that 
]e u -  1L~< e ~ lul if luL ~< v, and that the support of any cluster C contains at 
least (2R + 1)~ lattice sites, we have 

~', /qz(C) l  exp(~ollClL) 
C e ,y~,~l 

C ~ i  

= 2 exp {-q~qr(C) F .ICQVq(/)I 
c ~ 4 '  L I CI 

C ~ i  

x exp(ro IlCll) 

Zq(C) I C ~ c / R [ ] } -  1 

~< ~ 2e2l~qT(C)lexp(~ollCll) 

C~i 

~< 2e 2 exp [(o~ - ~5)(2R + 1 )~] 4 K 

Lemma 5.2. Recalling that we introduced the "thickness" t by 
t= Irc{i}[/2R for any i e Z  v, let us define 

= log(4c) + t 4 
l og [3c (v -  1)] 

2R 

Let tiP1 >I C3" Then  

E 
aeA(V) 
zr(A)~i 

exp(ITc(A)l + co II~ll) ~ ( a )  ~ l 

with 

Ilall= ~ I w l +  ~ IlclL 
~,~Ea 0 C ~ a l u a  2 

whenever 

2 + log 4 
~o~<min ~Pl - -c3- (2R+ 1y t r  t i P 2  - -  3v -- t-- 4) 

Proof. Let ~ denote the set of finite, connected subsets P c Io such 
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that n(P)  = P and, if ao is an admissible family of walls in VR and P ~ ~, let 
I(ao, P) = I(ao) n n - l ( P ) .  Then 

expE[n(A)[ + col[all ] gJV(a) 
a ~ ( V )  
r c ( A ) ~ i  r ~t 

P e ~  a e ~ ( V )  k w e a o  ) 

P ~ i  n ( A ) = P  

2 

x ]~ I~ fq,(~o,(C)= (1) 
q = l  C~aq 

Using the inequality E(w) ~> ( t i P 2 -  3v) [W[ - i[ W[ - ln(W)l[ derived in 
the proof of Lemma4.5, we have E ( w ) > ~ ( f l p 2 - 3 v - t ) ] W ] ,  since 
I lml-  In(W)ll<~tlWl. Hence 

(1)~< ~ (exp[P[) ~ e x p [ ( c o - f l p 2 + 3 v + t ) l ] a o ] l ]  
Pc~r  ~ n ( s u p p  a0)  ~ P 
P ~ i aO E 5q'~a(V) 

2 

x ~ H exp(co Ila~ll) 1] If~,.,~,,o~(C)l 
( a l ,  a2)  ~ ~ ( aO ,  P )  q = l  C ~ a q  

~< ~ (exp Iel) ~ e x p [ ( c o - f i p 2 + 3 ~ - t - ~ ) U a o H  
P ~ ~ ao ~ ~r 
P ~ i n ( s u p p  a0)  ~ P 

- r  II(ao, P)I] 
2 

x ~ H exp[(co+t~)HaqN] 1~ Cfql(~0)(C)t 
( a l ,  a 2 ) C  ~(aO,  P )  q = 1 C ~ a q  

= (2) 
We use the notation ~(ao, P) for the set {(al, az)l(ao, al, a2)~/~(Zv), 
n(A)= P}, and in the last inequality we used the fact that I]aoH + t Ila,ll + 
t l[az[[ /> [l(alo, P)I whenever n(A)= P. According to Lemma 5.1 [using the 
inequality co + t~ <<. fiPl - c3 -- (2 + log 4)/(2R + 1)~] and the inequality 
c o - f l p z + 3 ~ + t + ~ < . . . O ,  one has 

(2)~< ~ (explP[) ~ exp[2-~[I(ao, P)l] 
P ~  aO ~ ~q/'a(V) 
P ~ i n ( s u p p  aO) ~ P 

x ~I []  {exp[(co+td)llCll]} Ifqz(~o)(C)l 
q = l  j e I ( a o ,  P )  k = O  C ~1 

C ~ j  

~< ~ (exp[PI) ~ exp[--(~-log4)lI(ao,  P)[] 
P E ~ a 0 ~ "If-a(V) 
P ~ i n ( s u p p  a0)  c P 

~< Z (explP[) ~ e x p [ - ( ~ - l o g 4 ) n ] c " = ( 3 )  
P ~ ~ n = [P[/t  
P ~ i  
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where we used the inequality II(no, P)I >~ IPl/t and the fact that the number 
of admissible families ao of walls such tha t / (no ,  P) is conected, it contains 
a particular site in 0(Tt-~(P))c~Io, and ]/(no, P)t =n ,  is bounded by c". 
[This is the same estimate as (B.10) for the number of contours.l  

Since r > log(4c), we have 

, exp[(log(4c) - ~)[el~t] (3)= Z (explelj 
P E ~  
P ~ i  

<~2 ~ expE( t+log(4c ) -~ ) lP l / t ]  
P ~  
P ~ i  

2 ~ [c(v - 1)]" expE(t + log(4c) - ~) 2Rn] = (4) 
n = l  

In the last inequality we used the estimate 

[ { P ~ r  IPI = 2Rtn}[ ~< [ c ( v -  1)]" 

(cf. B.10). Since 

we have 

(4)=2 

logl-3c(v - 1 )] 
/> 2R F t + log(4c) 

exp{2R[t  + log(4c) - r + log c(v - 1)} 

1 - exp{2R[t  + log(4c) - 3] + log c(v - 1)} 
~<1 

Our last task in this section is to use Lemma 5.2 to get a version of 
Theorem B.1 with aggregates playing the role of contours. We shall say 
that aggregates al and n 2 are incompatible iff d(x(supp al), 
x(supp a2))-..< 1. Then we can use the notation from Appendix B with 
and ~r replaced by ~ and ~ ;  thus, e.g., 6U I is the set of clusters of 
aggregates. Let us take ~o(a)= [Tz(A)[; l ( a )=  [lal[ for a~  ~,  [[C[[ = Z , ~ c  Ilal[ 
for C ~ ~cl, and denote supp ~ = U ~  supp n whenever g ~ &. Finally let 
us introduce the constants 

c5 = c5(v, ISI, R, t) = 17 3 -t- t~ -~ 
2 + log 4 
(2R+ 1) v 

and 

c6=c6(v, ]S[,R, t ) = 3 v +  t + ~  

with ~ defined in Lemma 5.2 above. Using this lemma and Theorem B.1 
together with the Remark following it, we get the following result: 
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Proposition 5.3. Let flp~ ~> c5 and tiP2 >/c6 and let V be a cylinder 
set Z ~'. Then there exists a unique function ~v,r: ~c~ __, IR such that 

log ~([B; ~vv)= ~ ~v,r(C ) 
C e (ycl(B) 

for every ~ c A(U), where U is a cylinder set with a finite base, and that 
for each i~ I o and co ~< min(flp~ - cs, BP2 - c6), one has 

I e OllCrl 1 
~(C) ~ i 
C ~ ~cl 

Moreover, 

~uv'r(C)= ~ ( - 1 )  rcJ I D J l o g ~ ( D ; ~ " )  
D=C 

for every C e ~c~. 
For  every 5 e ~Xoo there exists a unique function d v" ~ / ~  C such 

that 

C ~ ~cl(~) 

for every B c A and that 

E Id~(  C)J eC~flclt~<el~(suPps)r ] ~ t/Jl/(a) 
C ~ 5  I aE~g 

The function A v is given by 

and 

D e C  

whenever a~ e 5~ u C~ is compatible with every a2~ 52 u C2. 

6. PROOF OF T H E O R E M  2 A N D  T H E O R E M  1 

6.1. The estimates of Section 5 show that our aggregate model is a 
"well-behaving" model, exhibiting all the nice features of the contour 
models satisfying the condition (B.4), in particular the exponential decay of 
correlations. 
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Our primary task is, however, a control over the behavior of the walls 
of the original model. Thus, we have to "extract" relevant information for 
walls from our information about the aggregate model. This is the aim of 
this section and in pursuing it we prove here Theorems 1 and 2: 

P~(D) = ~ paw)(N; ~v)  (6.1) 
e 6gc~ 

w ( g ) = w ( ~ )  

6.1.1. We now prove that the correlations defined for V e 3q/'~~ 
by 

p~(v) = P~({D e ~(v)I w(a)~ v}) 

have the properties claimed by (a)-(c) in Theorem 20). The proof is based 
on (6.1) and Proposition 5.3. 

We shall use repeatedly the following estimate, which is a corollary to 
Proposition 5.3: 

L e m m a  6.1. Let //Pl >/ c5, tiP2 ~ C6, 0 -~ (2) ~ min( /~pl -  cs, 
/~Pz- c6), and let 5,0 c ~co, ~ c ~ ,  and a finite M c  7/v be given such that 
~(M) = M and a ~ ~ implies ~(A) c~ M # ~ whenever S E 5'~ Then 

T S 
~ g e 5  P C E ~  

Proof. 

I Av 2 IMI exp[ -co( in f  11~11)] ~(C)l ~ IIcli + in f  
cg ,y, 

~ la;(c)t 

~<~ ~ [ e x p ( - ~  inf IlCll) exp(co IlCII)] 13~(c)1 

.< Eexpt- o n ll ll l Eexp, tsupp rI 

<~ { ~  [exp rc(supp 5) exp(co IL~II)] 

x exp[ -m( in f  IlCll + inf 11511 )] 
cg At, 

1-[ I ~ (a ) l  } 

i ~ M  a :  i ~  ~z(A) 

x exp[ -- ~o(inf IlCll + inf II511 )] 

~< 2 iMI exp[ -eo( in f  [lOll + inf 1lSll)] 
5 ~ 
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Proof of Theorem 2(i)(a) for a Cyfinder U with a Finite Base. 
us denote the set 

{~  ~ ~ ~  W ( 5 )  ~ v ,  a e 5 ~ V c~ W(a )  # . ~ }  

by ~Yc~ V). Then, due to Lemma 4.9, 

5 e Cgc~ V) 

Proposition 5.3 and Lemma 6.1 imply that 

Let 

p~(V)  = ~ ~ AsV(C) ~< e x p [ -  ( 2 ~ -  t log 2) IIVII ] 
5 e 6~co(u, V) C e a  cl 

C c , ~ ( U )  

because ~ ~ ~co(u, V) implies [a @ 5 =~ n(A  ) ~ n (supp V) # ~ ], A ~(C) # 
0 ~ c = s ,  II ~ II/> II v II for ~ e ~ o o ( u ,  v ) ,  and I~(supp V)l ~< t ll V li- 

Proof of Theorem 2(i ) (b)  for a Cylinder U with a Finite Base. 
First we express the difference p~l(~/)-p{2(~/)  using the notation 
~~176 V) introduced in the preceding paragraph. 

pL(V) - p ~ ( v )  = X p ~c~,~(5; ~ )  
e ~ c ~  V) 

_ ~ p~(u~)(5; ,/,-u~) 
5 e ~'c~ V) 

~ e Oteo(Ul, ~" ) C e ~ ( U 1 )  
( C = , 5 )  

- E E ~Dc)  
5e~ 'c~  V) Ce~c~(U~) 

( C ~ )  

Since A~I(C)=A~(C)  for supp C ~ U~ c~ U2, 
according to Proposition 5.3, we get 

,%(v ) -p~(v )=  ~ E ,@(c) 

supp 5 c U1 ~ U2, 

5, e a c ~  ~ U2, V) C ea'cI(Ul) 
C r a'cJ(u2) 

5 e ~ c ~  U2, V) C66(el(u2) 
C r ~ci( u l  ) 

5 e ~ c ~  v )  Ce~c~(Ui)  
5 r 1 7 6  V) �9 

.~sa ' c~  V) Cc~cl(U2)  
5 r cgc~ V) 

822/50/3-4-21 
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We can estimate each of these four sums using Lemma 6.1 as in the 
proof of (a) to get 

I p ~ , ( v )  - p g = ( V ) l  ~< 4 exp[ - (co - t log 2)IIVII - co d(supp V, U1 + U2)] 

Proof of Theorem 2(i)  (c) for a Cyfinder U with a Finite Base. The 
difference P~(~/1 W ~/2)--p~(~k/1)pJu(~/2) is equal to 

5E~c~ V I u V 2 )  C~6~cl(U) 

~iI~(Xco(u, )x/l) CECTtrcl(u) 

• E E ~ d  c) 
~2~G(co(u, V2) CECgcI(u) 

Due to the factorization property of A~ formulated at the end of 
Proposition 5,3, some terms can be cancelled out. Since A ~ ( C ) = 0  when 
C 75 S and d(Clwsupp51, C 2 w s u p p 5 2 ) > l  when 5 1 c ~ V 1 4 : ~ ,  
52 0 V 2 r ~ ,  C 1 ~ supp 5 1 ,  C 2 ~ supp 52, IICqlj < �89 V 1, supp V2) 
for q = 1, 2, we have, denoting d(supp V1, supp V2) by d, the inequalities 

IJO'4(~J 1 ~ ~'/2) - -  JO'JU(~ff 1 ) p~(V2)I 
~< 

~co(u ,  v lwV2)  C~05d(U) 
IlCll/> a/2 

+( z 
\5@G{ (U, VI) CeC(cI(u) 

IICl[ > d/2 

N~6gc~ v2) C e ~ c I ( u )  

+ E (s~aco,,~,a, E IA~(C)I) 
, C e ~'d(U) 

s(C)l 
\ S e ~  (U, V2) CE~cI (u)  

IIC II > d/2 

~< 3 exp[ -- (c~ -- t log 2)II VI w V21I - �89 V1, supp V2) ] 

The assertions (a)-(c)  from Theorem 2(ii) follow from Proposition 3.4 
for the cylinder V with any base. 
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6.1.2. We now prove the equality (2.1) for a cylinder U with a finite 
base. The Gibbs state/~vH is denoted by # in the following. Since J ( U )  is 
countable, we can write 

#(A) = I  #(A I D) dP~(O) (6,2) 

where 

u(A I ~) = 
#(A ~ {xl~(x)= l}) 

u({x[l(x)= l}) 

for #-a.e. l e J ( U ) .  [In fact, / ~ ( { x l l ( x ) = l } ) > 0  for any l e J ( U ) . ]  We 
choose a fixed 1= (L X l ) e J ( U )  [such that P { ( I ) > 0 ] .  Let x e X  be such 
that B(x)= I. Then #(.] 1) is the Gibbs state in U~ U~2(1)w (U Int~ I) ~ 
with the boundary condition x (recall that U~ { i t  UId(i, U~)~>R+2}) 
because for any finite A c U~ w U~ and f bounded and measurable we 
get 

t t ( f  I fl) = # ( f x  Z~)/#(Z~) 

={s[S,,z.....,.:.,..,.,j.,.,.,,.,}/.,.,, 
= f f  f ( z  A x UAr Yj4(dzlu) p(du[ 1) 

where XD = Z{xiD(x)-~I- 
Finally, we have 

= u(zo I1) = 1 

We use a direct generalization of Lema 2.1: 

Lemma 2.1'. Let V c  2~ v be nonempty, z e X, and V= U V~, where 
V~ are such that d( V~, V~,)> R for e ~ e'. Let further (i) V= be finite, or (ii) 
V be a subset of a cylinder set with a finite base. 

Then there is the only Gibbs state/~v/J(.[ Zw) in V with the boundary 
condition Z v, and we have 

,6H ~, *4H(-Izv.) = | r cv .~  (-I- ~)| v# 6z(.) 
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Here 6z is the Dirac probability with 5z({z}) = 1 and by 7[v we indicate the 
projection of a measure onto Xv. 

Let us consider now the uniquely determined Gibbs states # ~ ( .  Ix q) in 

U~q=-U~ with the boundary condition x~)~ for q = l ,  2, and 
/U([.jint~l)C('[X]) in ([,J Int~I) ~ with the boundary c~)ndition (Xn)((Ulnt~i)O)c. 
Using (ii) from the preceding lemma the Gibbs state/~ is uniquely deter- 
mined, it is equal to 

/~u BH 
7[ U~I#uO('IX(u~I)c) @ 7[uO2#uO(.IX(u02)c ) @ 7[(uOI w ~22)c]'/(UInt~ I)0( " IX) 

Since obviously 
flH fiH ~ 0 ( .  I x(~>c) = ~ 0 ( .  L x ~  0 

for q = 1, 2, one has 

" )=~avo(-IxZ) |174 (6.3) 
From Proposition 3.4 we know that 

#~("  Ix q) = f~ #(" I Oq) Pq, uq(dOq), q = 1, 2 
q( Uq) 

The restriction of the configuration xsO(Oq)O (defined uniquely by the 
requirement that the external contours of x be equal to Oq) to (U~ ~ is equal 
to x~),.  whenever Oq~ Xq(Uq), and therefore 

7[U~q#UO ( " IX q) :" I Oq) Pq, uq(dOq), q = l, 2 (6.4) 

Since ~ is firmly chosen and OqEff{'eq(Uq(l)), q = l ,  2, we have, 
according to Lemma 2.1'(i), 

~(-I 0~, 02, 0) 

=u~u(.lO~)|174 ,) (6.5) 

Combining (6.2)-(6.5), one gets the equality (2.1) for a cylinder U 
with a finite base. 

6.2. Let V be a cylinder (with a not necessarily finite base). The 
inequality (i)(b) already proved for cylinder sets with finite bases implies 
that the limit over cylinders with finite bases ordered by inclusion exists, 
namely P Jr = limu .~ v P"~. This limit is obviously nonnegative and satisfies 
(a)-(c) from Theorem 2(i). 

This finishes the proof of part (i) of Theorem 2. Part (ii) is known 
from Proposition 3.4. 
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6.2.1. O n e  realizes easily that, according to Lemma2.2, the 
probabilities P{ can be understood as probabilities on ~K r176 in fact on 
~ "  c ~K ~~ for cylinders U with finite bases. It follows from the existence of 
the limit p r  v P ~  that Pv s converge weakly to Pr Namely, the 
probability P{ is defined uniquely by its values on sets of the form 

~'M, v = { V ' ~ t f ' ( V ) = 2 w ( v ) [ V ' c ~ M = V }  

for finite sets M =  ~1/~(V) and V c ~W(V). Since 

~ w  ~ M \ V  

where JCd v = {V' e ~K( V) I V' ~ V } for V c M, the probability Pr v) is  
defined by the expression 

V '  ~ M \ V  

Note 

0 Jgv ,~ {, ~ = ~ v  ~ v' for V w V' compatible 

= ~ otherwise 

Since we have already proved that p~ ~ p { ,  we know that P{ = 
lim u . v P {  weakly in "r It is simple to notice that P{(~/Uc~ 1 
[the set ~K(V) \ ' fU~176 is covered by the countable union of sets of 
families of walls that are "incompatible at i, j e  Z v for i, j neighbors"]. 

According to the inequality (i)(a), we can deduce that PJv(CC~a(V)) = 1 
similarly as we deduced the corresponding fact for contours in 
Theorem B.2 (see Appendix B). We need only that the expression 
2 o ) - t  log 2 from the exponent in the estimate (i)(a) of Theorem 2 is 
greater than log(c) for the maximal o) allowed in Proposition 5.1, i.e., 

2 min(flpl - c 5, tiP2 - c6) > t log 2 + log(2c) 

This follows from the assumptions of Theorem 2. 
Lemma 2.2 implies that the probability P Jr is defined on the space 

Ja(V)  c J ( V )  of admissible interfaces. 

6.2.2. It remains to prove equality (2.1). Since we know already that 
(2.1) holds for cylinders U with finite bases, it suffices to prove that 

f P~(dD) f #(q~ I I], 01, 02) P~,u,(,)dO,) P~,u2(o(d02) 
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converges to the right-hand side of (2.1) for any cylindrical function q). Let 
us suppose that q~ lives on a finite subset A of 7/L We consider the function 

f ~ ( l l )  = Z(II) ;o y(q~ I l, 0~, 02) pel, u,(,)(dO~) P~,v2(,)(d02) 
lXO2 

where 

Oq= {Oq~Y q(f q(I))l(rnAR~ ~5, ])~Oq)::::~ I1~1 ~ k} 

and X(D)= 1 if ~EW(~) ,  W n A R r  ]Wt <<.k and ;((D)=0 otherwise. 
We use the same definition for f~(n) .  
It can be deduced from the estimates (a) in (i) and (ii) that 

P{(dl)f~(B) converges to ~ P{(dD)f~g(I) uniformly in U. 
Thus, it suffices to prove that ~P~(dn)f~(~) converges to 

P Jr(dO)f~v(U) for "U with finite bases converging to V accordingly to the 
order by inclusion." 

We can express the integral ~o~ • 0 2  as a finite linear combination of 
products of correlations of the form ~ 0 Pl, UI(I)(1) P2, U2(1)(02), where 0~, 02 are 
families of contours 7 for which IFI ~<k, and F ~  AR # ~ .  [Notice that 
V((o I B, 01, 02) is constant on the set of 0~, 02 such that U{I~c~ARI~/~Oq, 
q = 1, 2 } is given.] 

It follows from (i)(b) that these Correlations converge for U 
converging to V uniformly in 0~, 02 because d(AR+k, U+ V) converges to 
infinity for U converging to V and thus f~(0)  converges to f~(n) uniformly 
in U. 

We thus have 

f P-~(dQ)f~(U) converges to f P~(d~)f~(l) (6.6) 

uniformly in cylinders 0 with finite bases. 
Similarly, for 9' converging to I we have f~(Q') converges to f~(D) 

because d(AR+k, Uq(F)+Uq(I)) converges to infinity and we can use 
(i)(b). 

Hence f ~  is continuous (notice that it is not cylindrical because the 
probabilities Pq, Uq{l) depend on the change of I far from A) and 

f P{(dB)f~(D) converges to f P{(d])f~(D) (6.7) 

The properties (6.6), (6.7) imply that S P~(dn)f~v(H) converges to 
P~(dU) f~(U). 

This finishes the proof of Theorem 2. 
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6.3. Proof of Theorem 1 

We shall prove the extremality (i). The other statements (ii)-(iv) are 
an immediate consequence of Theorem 2. 

Repeating the proof of Corollary 3.1 from Ref. 4b, we see that the 
extremality of the Gibbs state # from Theorem 1 follows from the following 
result. 

Proposition 6.2. Under the assumptions of Theorem 1, there exist 
constants x > 0 and A > 0 such that 

l/z(qo, qo2) - y(qo~) y(q02) I ~ A IAlt tA2I expl- -tcfld(A1, A2)] 

whenever (/91, q)2 are A1, A2 cylinder functions such that H~o~]l~l, 
J[~o211 ~< 1, respectively. 

This is (a slightly reformulated version of) Proposition 3.2 from 
Ref. 4b. While we shall in principle follow its proof, we first have to fill a 
gap in it. Namely, the proof in Ref. 4b does not apply, e.g., if 
z (AI)c~z(A2)~Z and this is exactly the case used in the proof of 
Corollary 3.1 stating extremality. 

The gap may be filled with help of an estimate on the height of the 
interface proved in Ref. 12 and also in Ref. 4: 

Lemma 6.3. Under the assumptions o f  Theorem 1, there exist 
constants ~ > 0 and _K > ov such that for all i e Io one has 

#({xlh~(D(x)) ~ N}) ~< Kexp(-Y~flN) 

where h,(D) = sup{d(j, Io)) I j ~ / ,  ~r(j) ~ i}. 

Proof. Denoting by W~(U) the set of all standard walls in ] encircling 
the point i, 

W~(I) = {w ~ w(a)] i e Intl0(rc(W)) w re( W)} 

we clearly have 

hi(n)~ ~2 IWl=lJ~/i(~)ll 
w e  Wi(0) 

Denoting further by ~K~ the set of all admissible families V of standard 
walls such that every wall w e  V encircles i (i~Int/0(rc(W))w re(W)), we 
have for the expectation with respect to the measure kt and any ~ > 0: 
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E(exp[(~3hi(D )] ) 

~< E(exp [~fi II Wi(D )ll ] ) 

~< ~ l-exp(~31lVl[)] p~(V)  

~< ~ e x p [ - ( c h - t l o g 2 - ~ 3 ) l l V I I ]  
V E ~.r 

t,og  t 
I W l > ~ n  

The last expression is finite (~< g') for ~ small enough. Hence, according to 
Chebyshev's inequality, 

#( {]lh~(O)>~ N} ) 

=/~({D I exp[~/3h~(])] >/exp(~3N)}) 

~< K" exp( - ~3N) 

Proof of Proposition 6.2. Consider 6, N > 0  and denote 
Da = (Aa)6 n (Io) N, Ea = ~(D,), a = 1, 2, where (Aa) ~ is the b-neighborhood 
of Aa and (Io)u is the N-neighborhood of Io. Note that d(E1, E2)>/ 
d(A~, A2)-2N--26. With the help of (2.1) one gets 

= ]IPJ(dD)12((~01 q)2 [ ~ ) - - I  P~(dB)/~(q)l [ ~)I  PJ(dB) #(r [ l) 

f P~(dB) I#(qh q~2 [ D) - #(~ol [ a) #(~o210 )1 ~< 

+ ; PJ(dD)]2((~1 [ ~)/g(@2 t ~ ) - f eJ(dn)/g((~l [ ~) f P'~(dO')/z(~o21 a') 

(6.8) 

We evaluate the first term by taking into account (6.3) and 
Proposition (3.4)(iii) by 

KIAIwA2[ 11r [I(P2[[ exp[-ad(A1, A2)] 

In the second term we restrict the integrations to D corresponding to 

V ~ o ~ = {V ~ ~ua [ sup{ Ihi(n(V))l i~ g((A1)6 w (A2)6} ~< N} n 
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where 

~ - =  {V ~ ~r V, [re(W) ~o Int10 ~(W)] c~ [E, U E2] 5k ~ 

implies [ WI ~ k } 

Denoting 

and 

V . =  {w c V l (rc(W)vo lntzo rc(W))~ E~ r ;2~} 

< =  { V ~ e l V . = v } ,  ga=  { V + ~ I V . = V } ,  

note that for every V e ~ we have 

if ~w e V\(V1 w V2), 

Note, moreover, that 

a = l ,  2 

then d(rc(W,), rc(Wz))>d(E,, E 2 ) - 2 k  (6.9) 

then d(I(~/)~rc-l(W),A~uA2)>~6 (6.10) 

PJ(~/r ~ I x(A 1 ~ A2)I6 v. K exp ( -  ~flN) (6.11) 

and that for every V ~ g, according to Proposition 3.4(iii) and (6.9), we 
have 

I#(cpalD(V))-~(q~.ln(V.))l ~<glAal II~0all e-~a, a = l , 2  

Hence, we have for the second term in (6.8) an estimate 

3 ]rt(A, vo A2) I 6VRexp(-~flN) + 2K([AI] I1~011[ + IA21 1109211) exp( -a6)  

+ f~_ PJ(dfl) U(O11 f l (~k/ l ( l ) ) )  ]A(q)2] ~(~/2(f l ) ) )  

- f~ e+ (aD)  .(v,, I D(v , ( l ) ) )  f~ P + ( a n ' )  ,,(q,~ I o(v~(~'))) 

Again using (6.1l), we estimate the last term by 

3 [Tr(A~ w A2)] 6VRexp(-~flN) 

~dl E -~1 
~/2 ~ ,~2 

- P+({u + g l  u~ = v ,} )  e+({u  ++~1 uz = v=})l 
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Realizing that the inequality (i)(c) from Theorem 2 can be generalized in a 
similar way as when the estimate (ii)(c) from Proposition 3.4 was extended 
to (ii)(c') in its proof, we get for the last sum the estimate 

3 IIqOll I Ilqo211 exp{ -- �89 E 2 ) - 2 k ] }  

7. PROOF OF THEOREM 3 

Theorem 3 follows from: 

Proposition 7.1. 
for any cylinder V -  V 8 with finite base 

lira fin cyl log 
U . -  VB 

Under the assumptions of Theorem 3, we have 

z( u) y*,~; 3H) 
Z ( U l ( I o ) \ ( I o )  R I x  1 ) Z ( U 2 ( I o ) \ ( I o )  R I x  2 ) 

=-/~ E ~o~(y)+ y~ v',~(c) 
A ~ (Io)R C ~ G~cI(B~(V)) 

A c~ V r f25 

r IsuppC~(VR)ql •• 
cl [supp C[ C ~ ,~g-q 

supp Ct~(IO(~ VR) :/- ~::~ 

+ 2  
q = l , 2  

where 151 < [e-~/(1 - e -~  18BI 
Theorem 3 equal to 

with ~o from Theorem 2, and A from 

c ~ c~d I~(supp C)I 
~ ( C ) ~ i  

2 

q=l c ~ '  Irc(supp C)l 
supp C c~ ~z(i) :/- .~ 

The ~ v, r were introduced in Proposition 5.3 and q~qr in Section 3. 

Proof. According to Lemmas 4.2, 4.3, and 4.9, we get 

z(uI y~,2; 3H) 
lim fin cyl log 

u1  v Z(Vl(Io) \ ( Io)Rlx~)Z(V2(Io) \ ( Io)Rlx  2) 

=log  ~e(A(V) I T v) 

N(UI y; fill) 
+ lim fin cyl log 

u.,  v~ Z(U~(Io)\(Io)RIx~) Z(U2(Io)\(Io)Rlx 2) 
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The second term is, according to Lemmas 4.3 and 3.1 

limufincyl { p(flH) I U RI + fl 
A c U  c 

2 

q= l  C~#F~ I I CI 
C , q  

[A c~ URI 

IAI 

p(BH) II0 c~ URI - fiEl0~ u~(~o) 

F 
q ~ A ( x q )  [ A  ~ ( U R ) q ( l ~  - -  f l e ( x q ) l ( U R ) q ( I o ) [  

- L x 
q = 1 A = [ t : q ( / o ) \ U o ) R ] c  ]AI 

+ l o g  O((UR)q(Io)lxq; flH)l } 

Taking into account that fle(x q) =-p(qbq)- p(fiH) for q =  1, 2 and using 
Proposition 3.2(ii) combined with Theorem B.1, we get for this term 

lim fin c y l ~  ~. v {fl [A ~u" (PA(Y) IA~IAIUR~ 
2 

q ~  1 A =  [ Uq(IO)\(Io)R] c 

q ~ l  C ~  
s u p p  C ~ ((Us)q)C~ 

c ~ ~ i  I I supp C I 
C . q  

2 

= - ~  E ~A(y)+ Z 
A = (Io)R q ~ 1 

A c ~ V ~  

2 

- 2  X 
q = l  C ~ .~U~ I 

C , q  
s u p p  C c~ (I0 c~ VR) v~,Q~ 

IA n (U~)~(Io)f E,o~ ~(~o) 7 
IAI J 

q~qT(C ) Isupp C r (UR)ql 
I supp C I 

S ,t,~(c) 
C 6 5U~ 1 

s u p p  C ~ ( 1 0 ~  V R ) ~ 5  

~qr(C) Isupp C r V~l 
t supp C I 

tsupp C c~ (VR)qt 
tsupp C[ 

Using Proposition 5.3 for the expansion of log ~e(A(V) I r v) and taking the 
third term above for A, we finally get the statement of the proposition. The 
indicated form of A then follows in a straightforward manner. 
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A P P E N D I X  A. THE G E O M E T R I C A L  S T R U C T U R E  OF 
INTER FACES 

Our aim in this Appendix is to prove Lemmas 4.1, 4.8, and 2.2. Most 
methods and formulations are modifications of geometrical lemmas from 
Ref. 3 or Ref. 16. 

We suppose v/> 3, though in some lemmas it is enough to suppose 
v >~ 2, as will be indicated. 

We begin by recalling a useful lemma, ~ which, among other things, 
implies that contours are q-contours for some qe  {1,..., r} as mentioned in 
Section 2.2. It will serve several times in the analysis of interfaces. 

L e m m a  A.1. Let v>~2 and M~7/v and 7/V\M be R-connected 
(R = 1, 2,...). Then 8 M =  {ie M[ d(i, 7/~\M)= 1 } is R-connected. 

For the reader's convenience we reproduce here the proof from 
Ref. 16: 

Put 

A = { x e  R~ld(x, M ) < R / 2 +  1/3} 

B =  { x e  N~]d(x, 2 V \ M ) < R / 2  + 1/3} 

According to Ref. 17, Chapter 8, w II, Theorem 2 and Ref. 17, Chapter 9, 
w II, Theorem 11, the intersection A n B is connected. We choose 
xl,...,Xp in A ~ B  such that p(xj, x j+a)<l /3 ,  p(a, x l ) < R / 2 + l / 3 ,  and 
p(b, Xp) < R/2 + 1/3 whenever a, b ~ 0M. Let us find yj ~ 8M, j = 2,..., p - 1, 
such that p(yj ,  xj) < R/2 + 1/3. The sequence a, Y2 ..... yp_ ~, b proves that 
a, b belong to the same (and thus the only) R-component of OM. 

It is often useful to realize that the components of the complement of 
an R-connected set always satisfy the assumptions of Lemma A.1. 

Proof of  Lemma 4.1. It is obvious that there are at least one and at 
most two infinite components of B(x). Let us suppose that the complement 
of one of those infinite components (say I) of B(x) has a unique infinite 
R-component (say I~). According to Lemma A.1, we know that 0I~ is 
R-connected. Since ~I c n B ( x ) =  ~ ,  we have 

x o ~ = x ~  

for some q~ {1,..., r}, but this is obviously impossible. 
To prove the other lemmas, we need some observations about ceilings 

and walls. Sometimes we shall deal with Io [and its subsets of the form 
S =  n- l (S)c~  Io] as with ;~v 1 (and its subsets) in an obvious sense. 
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k e m m a  A.2. Let v ~> 2 and let I be the support of an interface. 

(a) Let D be a ceiling column. Then one has h(D)= h ( n - l ( i ) n  I) for 
any i e I  such that d(i, D)<~ R. In particular, the ceiling columns that are 
contained in the same ceiling C have the same height h(C). 

(b) Let D be a conected subset of Io such that ~ - l ( D ) n I  is 
contained in the union of all ceilings. Then z - ~ ( D ) n  I is contained in a 
sole ceiling. 

(c) Let C be a ceiling of L and G be a component of Io\~(C) in Io. 
Then zc-l(G) n I is connected. 

Proof. 

(a) Let D be a ceiling column. The assertion follows from the fact 
that the heighest and the lowest hypercubes B such that B n z r - ~ ( D ) -  - 
B n D r ~ are bad ones. 

(b) Due to (a), all ceiling columns from g - l ( D )  n I are of the same 
height and thus belong to the same ceiling. 

(c) The case v = 2  is simple and we omit the proof. Let v >2 .  Let 
i, j e  z~-l(G) ~ I and k 1 ,..., kp e I be such that kl = i, kp ---j, p(k l, kt+l) <~ 1. 
Let l 0 be the smallest index with kt0~C and l~ be the largest index 
such that kt~e C. Then kt0-1 and k~, + ~ are elements of ~-I(8(z~(G))) n L 
LemmaA.1 implies that ~ g ( G ) n l o  is connected in I0 and the columns 

- l (k)  n I are of the same height by (a) for all k e O~(G) n Io. 

l_emma A.3. (a) Let w = ( W ,  xw) be a wall of an interface 
D = (/, xl). Then 

~-l{i~ZVJd(i ,  W ) ~ < l } n  U J , v = w  

(b) Let G be any component of Io\zc(W) in Io. Then ~ 1(8G n Io) n I 
is contained in a sole ceiling C and ~-1(i) n I is a column of height h(C) 
whenever i e c3G c n I o. 

Proof." 

(a) The set Go=n({ieEVld( i ,  W)<~ 1}) is finite and connected in I 0. 
According to Definition 2.2 and Lemma A.2(c), the set n I ( G ) n I  is also 
finite and connected. Let us consider any ceiling C for which 
~(C) n G o r ~ .  Lemma A.2(c) implies that ~-1(G1)c~/ is  connected, where 
G1 is the component of Io\~(C) containing zc(W). Removing all ceilings 
that intersect Go, we get a connected subset of ~- l (Go)  ~ I which contains 
W and does not intersect any ceiling o f / .  This implies (Definition 2.3) that 
the resulting set is identical to W. 
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(b) The set n(W) is conected; thus, Lemma A.1 applies to Io\G in Io 
and 0G c~ Io is connected. Lemma A.3(a) implies that n I(OG c~ Io)c~ I is 
contained in the union of all ceilings and Lemma A.2(b) implies that it is 
contained in an only ceiling. The other assertion follows from Lemma 
A.2(a). 

Recall that v > 2 if not specified otherwise! 

Proof of Lemma 2.2: 

(a) We use Lemma A.3(b) for the only infinite component G of the 
complement of the support W of ~. We may denote the height of the 
ceiling from A.3(b) by h(W) and show that T_~(w)W is standard, applying 
Lemma A.3(b) to the other components of n(W) c in Io. 

(b) Lemma A.3(a) implies that W ( I ) ~  c~ Let V ~  =. We know 
that there are finite external walls in V by the definition of ~ a .  Using 
Lemma A.3, we construct easily an interface having the external wall E(k/) 
of k/as its only walls. The construction of I(V) can be completed by induc- 
tion, continuing with external walls of V\E(V), etc. It is easy to realize that 
the construction gives the only possible interface with prescribed walls k/. 

Part (a) of Lemma 4.8 is proved by the following: 

k e m m a  A.4. Let a be an aggregate of an admissible triplet T. Then 

is contained in one ceiling of I(T). 

Proof. Let G be the only infinite component of 

Then (~?G)c~ I0 is connected in Io and n I(~?G c~ Io)c~ I(T) is contained in 
one ceiling, by Lemma A.3(b). The set 

F= [ ( Io\ G ) ~ ~G ] c~ (~O~o EXtlo W) 

is connected and Fc~n(W)=~ for every w e T 0 .  Here n-l(F)c~l(T) is 
contained in one ceiling the statement folows, since 

F ~ 3 (  ~ EXtlo W) 
~ E(ao) 
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Proof of Lemma 4.8(b) may be carried out in a similar way to that of 
Lemma 2.2(b), considering whole aggregates instead of separate walls. 

Remork. We could prove elementarily that the number of standard 
aggregates a with i e A  and Ilall = n  is less than g" for some constant g 
depending on v only. This estimate would yield an alternate proof of 
Lemma 5.2. 

APPENDIX B. CONTOUR MODELS 

We summarize here some rather standard ~8'~% statements about con- 
tour (polymer) models. Since we shall use them in a situation where the 
role of contours is played by more complicated objects (namely, aggregates 
of walls and clusters; cf. Section4.1), it is useful to introduce contour 
models in a more abstract form. In stating Theorem B.1, we closely follow 
Ref. 20. 

Let us consider a countable set ~, the elements of which will be called 
contours. Let t c ~ x  ~; be a reflexive and symmetric relation; pairs 
(7~, 72) e z (denoted also 7~ t 72) will be called incompatible, while they will 
be called compatible if (7~- 72) q~ t. By a~ff~176176 we denote the family of 
(finite) sets 0 c N consisting of mutually compatible contours. Considering 
a contour functional ~b: ~ C ,  we denote ~ b ( 0 ) = l ] ~ @ ( ? ' )  for each 
~? e ~(Y, ~ ( ~ )  = 1. If k c ~ is a finite subset, the partition function ~((1_; ~)  
is defined by 

z(k;r Z 
# e .~co(k) 

where Sc~  = {c? e ~ o ,  c~ c k}. The correlation function pa(c~; ~)  of ~? in 
k is defined by 

pda; r ~(a' ~(k; @) 
a': a ~ a '  e ...~c~ 

Note that pL(~?; @)= 0 whenever c~ ~ L We often omit q~ in ~ ( k ;  ~)  and 
pt(~; ~b). The tacit assumption ~e ( [ )#  0 needed for the definition of PL will 
be always true under the hypothesis of Theorem B.1. We denote by J, Cl(k) 
the family of all finite subsets of k c ~, • i =  oUi(N). If C e X s, we denote 
C<= N\C, IC[ the number of contours in C, and write C i y whenever y e 
and there is y ' e C  such that 7 t 7'. We call C e ~ Z  a cluster if it is not 
decomposable into two nonempty sets, C = C~ c~ C2, such that every pair 
~1 E C1, ~)2 e C2 is compatible (i.e., such that C1 x ~2 ("11 = ~ ) .  The set of all 
clusters will be denoted j{-cl. 
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If Jr a contractible set of contour functionals and ~(t_; 05) # 0 for 
every 05 e Jr and every ~ ~ S s, as is the case in the following theorem, then 
there is a unique continuous branch of logarithm for which 
log Y'([; 05 = 0 ) = 0  [N.B.: ~(1_; 05 = 0 ) =  1 for every 1_ ~ i f  f ] .  We always 
take log ~(1_; 05) in this sense 

T h e o r e m  B.1. Let functions a: ~ ~ [0, oo), l: N ~ [0, oo), and 05: 
--> C and a number co >~ 0 be such that 

exp[a(~/) + coI(7')] 105(7')[ ~<a(7) (B1) 
y':7'ly 

for each 7 E ~. Then ~(1_; 05) # 0 for each finite 1_ c ~ and: 

(i) There exists a unique function 05r: Sf__.  C such that 

log ~e([]_)= ~ ~r(C ) (B2) 
c ~ ~so_) 

for each finite 1_ < ~. Moreover, the function 05r is given by the formula 

05r(C)= ~ ( - 1 )  icl-luilog ~ ( B )  (B3) 

105r(C)1 e~ (B4) 
C~y 

for each 7e 0~ and with l ( C ) ~ < ~ c  l(y). We have 05r(C)=0 whenever 
C C X  el. 

For every O E ~  s'~~ there exists a unique function d0: J ( S ~ C  (ii) 
such that 

p~(a)= F, zo(c) (Bs) 

for each finite 1_ c N. Moreover, 

~ C  

for each finite C c ~ and 

(B6) 

IA~(C)le ~t(c) ~ e "(e)+ ~l(~) [05(~)[ (B7) 

with a(~)= Z ~ a  a(7). We have d z ( ~ ) =  1 and 3 z ( C ) =  0 for C # ~ .  The 
function A~ satisfies a factorization property: 

&(C)  = &, (C , )  Z02(C2) (B8) 
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whenever 8 = 8 ~ w 8 2 ,  C ~ - - C 1 u C 2 ,  and all contours from C l k . - ) ~  1 a r e  

compatible with those from C2 w ~3 2. 

Remark. When referring to above theorem we shall also use the 
following straightforward generalizations of the assertions (i) and (ii): 

(i') If B o l e  is finite and []_(B)={Te[KITtB}, then ~(a_(g)) 
converges and 

log ~e([L([B))= ~ ~T(C) (B2') 
C e ,X~(L(D3)) 

(ii') If k c I~ is arbitrary, the limit limECx.j ' [ .. L PE(#)=P~((3) exists 
and again 

p~(a)= y~ ~o(c) (BY) 
C c k  

Proof of Theorem. Part (i) is proven in Ref. 16. We can also follow 
the proof here by proving that A~ defined by (B6) satisfies (B5), that it is 
unique, and that it satisfies the factorization property. To prove the 
estimate (B7) we use (B6), the definition of p~(c~), and (B2) to show (for 
c~cC) 

4~(c)= E 
[B~C D c ~  

Dtcq 

=(P(#) ~ ( -1 ) lc l -ml  ~ 2"71 ~, f i  [ _ ~ T ( ~ Z )  ] 
B ~ C  n ~ 0  I~; D I , . . . , D n c ~  l~ - I  
~DC~ D 1 10,..., DnZO 

='P(a),E= y.. y, (_lp~-F~ S, i--r 
0 B : t ~ c B c C  Dr,..., On c ~ l = 1  

DI tO,..., [DnrO 

n ~ 0  ~i,..., Dn ~ C l = 1  
[~1 z d,..., D~n l # 
(U Dz)~a=C 

In the last equality we used the fact that 

( - -1 ) lq -  I~l --- (--1)lc\(u a~)'~ ~ = 0 
B: (UE~ t )~O~BcC 

822/50/3-4-22 
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whenever (U [13~)to ~ ~ C. Thus, 

Z I~0(C)l e ~(c> 

n = O  Ce3f~J D 1 ..... ~ n ~ C  l = 1  

according to (B4). 
A particular situation where one can apply the above theorem 

concerns contour models used in the Pirogov-Sinai theory. Contours 7 are 
then connected subsets supp 7 of a lattice 7/~ together with a configuration 
on it (see Definition2.1), and one considers for N the set ~q of all 
q-contours with a fixed boundary condition x q. In this case we also use the 
notation dfq ~ dCq I, J f~,  etc. Two contours 7~,72 are incompatible if 
d(supp 71, supp 72)~< 1. If ~ e dlq ~ the set 0(~) of external contours of ~? is 
the set 0(~)= {Te~l,Te0, ~#7 implies s u p p ? c E x t y } .  If VeT/~, let us 
introduce Nq(V)= { 7 ~ q l S U p p 7  c c  V}. Whenever V c 2  ~ is finite, we 
denote ~ q ( V ) = L r ( ~ q ( V ) ) ,  Pq, V(d)=p~q(V)(O ) and by ~q(V lcb ,  b) the 
partition function of the contour model ~b with parameter b >/0 defined as 

/ \ 
~q(VIq~ ,b)  = ~ exp(b  U Int?}~b(~3) (B9) 

0 E ~g.~o(V) ~ E 0(c~) \ / 

If V c Z  ~ (not necessarily finite), we denote by dd~~ the set 
{Oed{'q~ and by dg'q~ the set {~ex;~ 
whenever 3 e dg~~ Let us note that the set ~'~~ may be considered 
as a measurable subspace of a compact metric space {0, 1 } ~q endowed with 
its Borel a-algebra. Finally, by dg~(V) we denote the set of admissible 
0 s dgq~ i.e., those ~ e dl~~ for which either 0(0) is nonempty or ~? is 
empty. Notice that 0(~?) # ~ implies that any element of 3 is external or is 
contained in the interior of some external contour. 

Let us denote by l TI the number of lattice sites in supp 7. It is easy to 
show that there exists a constant c such that 

1{7r ~qlsupp 7~ i, 171 =n}[ ~<c n (B10) 

for every i~Y_ v. It is clear that we can put c =  ISI c(v), where c(v) = is an 
upper bound on the number of connected subsets of cardinality n that 
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contain a fixed site 2 ~. It follows easily from the existence of a path that 
covers a connected graph and utilizes each its edge at most twice (2~ that 
one may take c(v)=(3 ~ -  1) 2(3" 1). Taking a ( y ) = / ( 7 ) =  171 [this is not an 
optimal choice; considering a(y) = a-171 and optimizing in a, the estimates 
could be improved] and noticing that supports of "shortest" contour 
contain (2R + 1)u lattice sites, we have the following: 

T h e o r e m  B.2. Let Ir ~ l  for each 7~[[~q with z > ~ l +  
log(2c). Then: 

(i), (ii) The statements (i), (ii) of Theorem B.1 are fulfilled with the 
estimates (B4) and (B7) replaced by 

Ir e ~ ~< 1 ( i~  Z '~) 
C ~ ,Z,"~ I 

s u p p  C ~ i 

whenever 
v log(2R + 1 !]  

~o~<r- l + l o g ( 2 c ) +  (2R+l)V 

(B4') 

(here supp C =  U ~ c  supp 7 and IlCl)=~c IYl), and by 

IAa(C)] e ~ 4 e {~' + ~)llell qO(8) (B7') 

whenever co ~< z -  [1 + log(2c)]. 

(iii) Whenever Vc2~ v (in particular V = Z  v) and c~eaU~c~ the 
limit over finite U c  V, ordered by inclusion, of pq, u(~) exists 

lira pq, u(O)=Pq.v(~) 
U.~ V 

If ~(7)/>0 for every y e ~'~q, there exists a unique a-additive probability 
measure Pq, v on 3(q~ such that 

p q  ( . r  @ ,v,~o o , ,  v ) ) = p ~ , d a )  

for each O ~ a~(q~ Moreover, Pq, v(#tq(V)) = 1 and Pq, v is the weak limit 

Pq, v = lim Pq,  u 
u ~ v  

(iv) Assuming furter that ~ is translation-invariant, one has for each 
finite V c  Z ~ 

l o g ~ ( V ) = p ( q S ) l V  I _ ~ qsr(C) [supp C ~ VI 
c ~ jr~ [supp CI 

s u p p  C c~ V c ~- .(25 
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with 

and 

whenever 

r 
P(~) = c~-~' [supp C[ 

supp  C ~ i 

(Bll)  

Ilog .,~(V)-p(~)[VII<~ {exp[-co(2R + 1)~]} 10VI (B12) 

I v log(2R + 1 !] 
c o ~ z -  l+ log(2c )+  ( 2 R + l )  ~ 

Proof (cf. Ref. 15). It is straightforward to verify (B1) if 
z >t 1 + log(2c). Then (i) and (ii) follow directly from Theorem B.1. 

The existence of limu~ vpq, u(O) in (iii) is implied with the help of 
(B5) and (B7). [This assertion is actually contained in (ii').] To introduce 
a contour probability measure on Sq~ we denote by ~/e the (closed) 
Borel set Jg0 = ~176 0, V) and introduce the probability eq, u o n  0ffq~ 
[supported by Xq~ by 

a~(0) 
eq, U( ~ ) ~- Z )Uq(U) ~ ( U )  

Any cylinder set is a finite, disjoint union of sets of the form ~'~,~ = 
{/~e ~q(V) l~n  ~ cO} with ~ e Yfqf(V) and 0 ~ 3((q~ Since 

and 

' - - y  e ~ \ 0  ' 

y e b "  

for 0 w 3" compatible and J / / o ~ =  ~ otherwise, one has 

P(J/[~,a)= P(,/go)- P ( y J/[~{~)) 

= 2 (-1)lZIP(~/o~a) 

for any probability P on Ydq~ 
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Thus, it suffices to verify the convergence Pq, u--* Pq, v only on ~ '~ :  

Pq, ~(JC/o) = Pq, u(a) -~ pq, v(O) = Pq, v(~Jgo). 
To verify that eq, v(ff{'q(V))= l, We refer to the usual p roof  (cf. 

Proposi t ion 2.2 in Ref. 2). Indeed, note  first that  considering a half-line 
parallel to a fixed coordinate  axis of 7/v and starting at a fixed site i t  Z v, 
there are fewer than n possibilities for its first intersection with a con tour  7 
encircling the site i such that  17] = n and thus 

Pq, v({~31/tint 7, 171 =n, 7 ~ } )  

<~nPq, v({OI i e  supp 7, 171 = n ,  7 ~ c3}) (B13) 

(cf. p roof  of Lemma 2.7 in Ref. 2). 
Hence, the probabil i ty  that  a site i is encircled by at least n contours  

may  be bounded  by 

Pq, v({Ol i~Int? ,  17J = m ,  ? ~ ? } )  

<~ ~ mcm e x p ( -  zm) 
m = n  

~< ~ 2mc ' ~ e x p ( - r m ) =  
m = n  

exp { - [z - log(2c)]  n } 

1 - exp{ - Iv - log(2c)]  } 

since the length of the nth contour  encircling i is at least n and m < 2". 
Then the probabil i ty that the site i is encircled by an infinite number  of 
contours  is bounded by 

lira exp{ - [ r  - log(2c)]  n } = 0 
= - ~ l - e x p { - [ r - l o g 2 c ) ] }  

Finally, the statement (iv) is proved by a direct applicat ion of  (B2) and 
(B4'). 
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