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Rigid Interfaces for Lattice Models at
Low Temperatures
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Lattice models (on a hypercubic lattice of dimension larger than or equal to
three) with spins attaining a finite number of values and finite-range interactions
at low temperatures are considered. The existence of rigid interfaces as well as of
surface tension under appropriate conditions is proven and the properties of
corresponding Gibbs states are investigated.

KEY WORDS: Lattice models at low temperatures; rigid interfaces; trans-
lation-noninvariant Gibbs states; surface tension; Pirogov—Sinai theory.

1. INTRODUCTION

A theory describing phase diagrams and translation-invariant Gibbs states
at low temperatures is now well developed for lattice models with finite-
range interaction exhibiting only a finite number of ground states. Starting
from the early papers of Peierls, Griffith, Dobrushin, and others, it found
one of its most general expressions in the Pirogov-Sinai theory.®?

It is natural to ask about the existence (and description) of trans-
lation-noninvariant Gibbs states in comparably general situations. The first
rigorous result in that direction was Dobrushin’s paper® concerning an
interface between phases of opposite magnetization in the Ising model. His
approach was further pursued and applied in a series of papers.*
Dobrushin’s strategy is to describe interfaces enforced by a suitable boun-
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dary condition in terms of perturbations (called walls) of the flat interface.
The corresponding Gibbs probability of interfaces thus forms in fact a
certain (v — 1)-dimensional model (v>3 is the dimension of the original
lattice).

The aim of the present paper is to show that, when combined with the
results and methods of Pirogov and Sinai,'") Dobrushin’s approach gives a
reasonably general tool for the study of translation-noninvariant Gibbs
states. The Pirogov-Sinai theory was used in a similar situation in a study
of surface tension for two-dimensional models.'® Here we need more
detailed information, since we have to control the thermodynamic limit of
the Gibbs state as well as its correlations.

When expressing the probability of an interface in terms of its energy,
one has to take into account the corrections describing the influence of the
surrounding pure phases. However, expanding the partition functions
“above” and “below” an interface by means of corresponding contour
models (Pirogov—Sinai theory), one gets an expression with corrections
localized in the neighborhood of the interface. Thus, one finally gets a
(v — 1)-dimensional model with “polymers” which are aggregates of walls
and above-mentioned corrections. The study of probability of interfaces
then turns into the study of a (v — 1)-dimensional polymer model of “usual
type” (polymers with only a hard-core interaction), which may be studied
with the help of a cluster expansion.’

Let us notice that the present paper is devoted to the study of models
with a unique type of “flat interface” (up to translations). However, the
method may be extended without much change to cover more general
models exhibiting the phenomenon of “phase transition inside the inter-
face.” This is briefly outlined in Ref. 8. The only novel feature is that even
the resulting (v — 1)-dimensional model is studied with the help of Pirogov—
Sinai theory.

The paper is organized as follows.

In Section2 we introduce some basic concepts and adjust the
geometrical notions from Ref 3 to our more general situation. We for-
mulate our main results about the existence of a translation-noninvariant
Gibbs state in Theorem 1. Its properties are described in a more detailed
fashion in Theorem 2. Theorem 3 concerns the surface tension.

Section 3 is a brief review of the Pirogov-Sinai theory with some
useful complements. The notation and abstract machinery of contour
(polymer) models used here and throughout the paper are briefly
recapitulated in Appendix B. '

Section 4 is devoted to the transcription of the partition function to a

5 A similar approach was recently used in other contexts, e.g., in Ref. 7.
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form suitable for the expression of probabilities of interfaces in terms of
“aggregate models” as indicated in the above explanation of our strategy.

In Section 5 we establish a condition of the type (B4) from Appen-
dix B for aggregates; it enables us to apply the abstract theory of contour
models for the aggregate model.

Translating the information about probabilitics of aggregates into the
language of walls (and interfaces) in Section 6, we prove Theorem 2.
Theorem 1 follows from it with the help of some known facts about Gibbs
states.

Section 7 contains a proof of existence of surface tension (Theorem 3)
as well as its explicit expression at low temperatures in Proposition 7.1.

For the reader’s convenience we include two Appendices. Appendix A
contains a formulation and proofs of some “obvious” geometrical
statements used throughout the paper. Appendix B (based essentially on
Ref. 9) summarizes the results of the theory of contour models and
corresponding cluster expansions.

2. SETTING AND RESULTS

2.1. Gibbs States

We consider lattice models on a v-dimensional hypercubic lattice Z*
with v an integer larger than 2. (Generalization to other lattices in R” is
possible). We always use the L_-metric on Z*: p(i, j)=max|i,— j.|. In
particular, a set 4 « Z" is R-connected if any two points [, je A are connec-
ted by a path {i'V,..., i®} = 4, iV =1, i = j, such that p(i", i~ V)< R for
every /=2,.,k The R-components of a set in Z® are its maximal
R-connected subsets. If R=1, we omit it from the notation (connected,
component,...). Whenever A,, A, < Z", their distance is

d(Ala AZ)zlnf{p(la.])llEAl’jEA2}

(if A,=¢, we define d(F, A,)=0c0 for each A,c=Z7"). We say that
Ay, A, < 7Y are R-distant if d(A,, A,) > R and denote A4, = = 4, whenever
Ay and A= 7"\ A, are distant. Finally, the diameter of A = 7" is diam A =
Sup{p(laj)|l>]e/1}

Considered lattice models will always have a finite set S of spin values
attached to each lattice site ie Z". Whenever V< 7", we denote X, =S"
and, in particular, X = S7". Let us make a convention that by A c Z" we
shall always denote nonempty finite sets. A lattice model with a formal
Hamiltonian H(x)=3 ¢ ,(x) is defined by introducing an interaction
94:X,— R for each 4 < Z’. Denoting by x, the restriction of xe X to
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Xy, we shall often write ¢ ,(x) instead of ¢ ,(x,). We suppose that the
interaction is of finite range R, ie., ¢ ,=0 whenever diam 4 > R for some
positive integer R.

If Ve2z is finite, V£, ze X, and V° =2Z"\V, we introduce the
“physical” partition function

2(V|z pH) = Y eXp[—B 5 wA(xVXZVc)]

xpe Xy AnNV+D

Whenever x, ze X we shall denote the sum > ¢ (x, xz,.) either by
Hy(x,|zy,) or by Hy(x}|z) and call it the Hamiltonian in the volume V of
the configuration x (x,) under the boundary condition z (z,.).

Whenever x € X and V < 7" is finite, we also introduce the energy in V
of the configuration x by

|4V

EV(X)=Z @ 4(x) "l

where | 4| denotes the number of lattice sites in A. The usefulness of this
notion stems from its additivity: E,  ,,(x)=E, (x)+ E,,(x) whenever
VinV,=. In particular, we write e(x)= E;(x) for ie Z" and note that
if x is a translation-invariant configuration, then e(x)=e,(x) is its specific
energy.

If V< Z® is finite and nonempty, we define the kernel uf#(x|z), called
a Gibbs state in V, under the boundary condition z,. by the formula

eXp[“BHV(xV|Z)]
Z(V|z; BH)

| 700w (dx 1 2) =TS xav)

for every measurable bounded function f. Instead of uf”(x|z) we some-
times use the notation p,(x|z) or u,{x|z ).

Let now V' < Z' be possibly infinite. We say that a probability measure
uon X (equipped with the o-algebra generated by cylinder sets) is a Gibbs
state in the volume V of a Hamiltonian H and at an inverse temperature  if

w0 =[| [ 760 sl ) | iy

whenever A finite =V and f is a measurable bounded function. The above
definition applies in particular to V'=27". A Gibbs state u in ¥ is a Gibbs
state in ¥ with a boundary condition z . X if

p({xeX|xpe=zp})=1
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Note that if V'# F is finite, there is a unique Gibbs state in ¥ under a
boundary z,., namely the state u for which u(f) = f(x) p#”(dx|z). This
justifies the term we used for the kernel pff. Later we use also the
following:

Lemma 2.1. If V= 27" is nonempty and either (i) " has only finite
R-components, or (ii) V is a cylinder with a finite base, i.e., there exists a
finite B< Z*~ ' such that V= {ieZ*|i; e Z, (i,,.., i,) € B}, then there exists
a unique Gibbs state pf(dx|z,.) in V under a boundary condition
Zype € X pe.

A proof is straightforward for (i) and is given, e.g., in Ref. 10 for (ii).

2.2. Interface

In the spirit of Pigorov-Sinai theory, the “excitations” of a con-
figuration will be considered by comparing it with a chosen set of
translation-invariant configurations {x',.., x"}, r > 2. A similar role for an
investigation of an interface is played by a fixed configuration y'? fulfilling
the following conditions:

(i) »' is horizontally translation-invariant: y'(i)= y'?(j) whenever
iy=J1-

(i) y'*(i/)=x"(i) whenever i, is large enough and y'*(i)=x%(i)
whenever —1i, is large enough.

We shall often denote y'*> simply by y and we always reserve this letter for
this particular configuration.

Our goal is to investigate a Gibbs state, which could be constructed as
a weak limit of Gibbs states in finite volumes V' under the boundary
condition y}z. In particular, we look for conditions on interactions {¢ ,}
and (inverse) temperature f that would ensure that the considered Gibbs
state is not translation-invariant. In a manner similar to Dobrushin,®
whose method we folow, we shall prove more about the structure of this
Gibbs state. To describe it we use Pirogov-Sinai contours and generalize
several “geometrical” notions from Ref. 3 to our situation.

Definition 2.1. Let x be a configuration, xe X.

(i) A hypercube C<=2Z" of diameter R is called good (for the
configuration x) if x.=x% for some g=1,..,r. Otherwise, it is a bad
hypercube. The boundary B(x) is the union of all bad hypercubes of x.

(i1) If I' is a finite component of B(x), we call the pair y= (I, x,) a
contour of x and I'=suppy its support. The pair y = (I, x,) is called a
contour if it is a contour of some x € X. Whenever y is a contour, we always

822/50/3-4-19
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denote its support by I. Denote also Exty and Inty the (only) infinite
component of Z'\I" and the union of its finite components, respectively.

Let us note that £,(x) does not depend on the choice of x e X with a
contour y, and we may and shall denote it by £,{y). Let us recall also that
there exists a unique g € {1,..., r} such that there exists a configuration with
Xgy, = (X7)gy, Which has y as its contour. This allows us to call y a
g-contour. We shall use the subscript ¢ to indicate this fact, denoting thus,
e.g., the set of all g-contours by IK, (cf. Appendix B).

In the following we suppose that the boundary B(y'?) has a unique
infinite component to be denoted by I(y) or sometimes I,. Later (in the
next subsection), we show that this assumption actually follows from our
“wall Peierls condition.” An interface can be defined for a class of
configurations:

Definition 2.2. Let x be such that B(x) has a unique infinite com-
ponent I(x), Z'\I(x) has exactly two infinite R-components, and I(x)\I( y)
has only finite R-components. Then [(x)= (I(x),x,,) will be called a (y-)
interface ofx. A pair 1= (I, x,) with Ic Z" and x,e X, is a (y-) interface if
there exists x € X such that l=1(x). We always use I for support of I,
ie, 1=(, x;), and denote by Zj(I) [resp. Z3(I)] the “upper” (resp.
“lower”) infinite R-component of Z*\I and by Int, I its remaining (finite)
R-components. Whenever V< Z® we denote by Vj, the neighborhood
Ve={ild(i, V)}<R+1] and by V), ¢=12 the intersection
V)=Z(I)"Vg.

We prove in Appendix A that configurations differing from y only on
a finite set have an interface (cf. Lema 4.1).

Let T, denote the vertical shift by he Z, 1e., T,(i)= (i, + A, i,,..,, 1,) for
ieZ’ and T,(x)(i)=x(T; (7)) for xeX, T,(M, x,)=(T(M), Ty(x4))
for Mc7%, x,€X,. Whenever Ac7’, we shall denote n~(4)=
{j=T (i) ued, heZ}; =(Ad)=r""(4)nT,. We shall now introduce
ceilings and walls of an interface .

Definition 2.3. Let I=(/ x) be an interface. A set C</ is a
column (of 1) if 7 '({i})nI=C whenever i€ C and there exists /(C)eZ
such that C=7n""(C) N T y(Ly) and x¢ = (Tjc)(¥)) . The number A(C) is
called the height of C. A ceiling column is a column C such that CxnI=
{ieZ"\d(i, C)< R+ 1} n[is a union of columns. A ceiling C of I is a com-
ponent of the union of all ceiling columns.

A pair w= (W, xy) is a wall of | if W=suppw is a component of
I\ (C|Cis a ceiling of 1) and xy= (x;)p. A pair w= (W, x,) is called a
wall if it is a wall of some interface. We denote the support of a wall w
always by W.
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Let w be a wall. Then, for any interface (and a configuration) l(x)
such that w is its wall, the number E,{(x) is the same. We denote it by
Ep(w).

2.3. A Gibbs State with an Interface

Let us collect here our main assumption about interactions {¢,} (as
well as inverse temperature f):

(1) Interactions {¢,} are translation-invariant and of finite range R.

(CP) Contour Peierls condition (GPS condition): There exists p; >0
such that

Er(y)—Er(x?) 2z p 1]

whenever y = (7, x,) is a g-contour.

{(WP) Wall Peierls condition: There exists p, >0 such that

Ep(W) = [Equy(y) +e(|W]—=In(W)])] = p, | W]

with either e=min{e(x?)}, e=e(x'), or e=e(x?), whenever w= (W, x )
is a wall.

(S) The configurations x' and x* correspond to stable phases for
interactions {¢ ,} at an inverse temperature f.

We recall the Pirogov—Sinai theory, and the notion of stability in
particular, in Section 3. Typically we have a situation familiar from the
Pirogov-Sinai theory with a Hamiltonian H arising as a small perturbation
of some H, complying with (I), {(CP), and (WP), by an addition of certain
“external fields.” If this perturbation is small, the Peierls conditions (CP)
and (WP) are again satisfied (perhaps with a slightly smaller p, and p,).
Whenever f§ is large enough, the “external fields” may be adjusted to
satisfy (S).

Let us notice that the lhs in (WP) do not depend on other walls of the
interface or on its vertical shift and thus one may supose, when verifying
(WP), that w is an only wall of an interface. Notice also that the
alternative inequalities in (WP) employing e(x') or e(x?) instead of
min,_, ,e(x?) may lead to a slightly larger p, and thus to stronger
statements in a (not a priori excluded) case with |W| < |n(W)].

An immediate consequence of the wall Peierls condition is the above
mentioned fact that B(y'?) has only one infinite component. Indeed, if it
were not the case and B(y'?) consisted of at least two disjoint horizontal
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layers, one could construct a new interface y’ by shifting one of those strips
vertically in such a way that, assuming for brevity that all e(x?) are the
same,

|Hy'|y)— H,(y|y) <const-L"~?

for large hypercubes V' with side L.

The interface corresponding to the configuration y, x y,. could have
only one wall w for E(w)~ L*~?, while the second term of the left-hand
side in (WP) would be of order L' ', in clear contradiction with (WP).

In some models the stability (S) at large f is due to a symmetry
between configurations x' and x?. Included here in particular are models
for which an interface has been studied before: the Ising model in Refs. 3, 4,
and 11 and Widom-Rowlinson models in Ref. 4.

It is instructive to analyze the case of the Ising antiferromagnet.
Although a theorem about the existence of an interface has been
announced, *? it seems, as we shall indicate below, that it cannot (at least
for the case with a nonvanishing external field) be considered as a
straightforward generalization of the approach used for the ferromagnet.
Strictly speaking, the Ising antiferromagnet does not belong to the class of
models considered here, since its ground configurations are not translation-
invariant. However, this failing may be remedied by partitioning the lattice
into blocks of 2’ sites each, attaching a new spin variable attaining 2*'
values to every block, and rewriting the interactions in an obvious way in
terms of new block spins. The ground configurations x', x* expressed in
terms of new block spins are already translation-invariant. However, what
fails is the wall Peierls condition. Namely, there are two natural and
different generic interfaces: the first corresponds to the configuration ',
for which, in terms of original spins, y'(i)=x'(i{) whenever i; > 1/2 and
y'(i) = x2(i) otherwise; the second corresponds to the configuration y", for
which (i) = x'(i) whenever i, >3/2 and y"(i)=x?(i) whenever i, <3/2.
When expressed in terms of new block spins, their difference is not simply
due to a vertical translation (in the block lattice). Indeed, while in one of
them, blocks with configuration x' on them touch directly blocks with con-
figuration x?, in the second one they are separated by a layer of blocks
with configuration differing on them from both x' and x°. Choosing one of
the interfaces of y' and y" as our y'% all areas of the second interface
should be considered as walls from the point of view of our definition. On
the other hand, it is clear that one pays for them by an energy proportional
only to their fringe; hence, the wall Peierls condition cannot be satisfied.
Thus, we see that a natural way to study the Ising antiferromagnet is to
model ceilings upon both those interfaces. However, to do it one should
generalize the method to the case of two (or generally a finite number of)
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different types of ceilings. The novel feature is that walls “remember” the
type of ceiling outside of them and one has to take this fact into account
when matching walls together. This is reminiscent of the situation with
contours in the Pirogov—Sinai theory and actually it may be tackled in a
similar way. While we are planning to study this case in a future
publication, in the present article we confine ourselves to the case of one
type of ceiling.

Note, finally, that an attempt to include the Ising antiferromagnet by
generalizing to a theory with periodic configurations x9, g =1,..., r, would
again lead to a theory with two types of ceilings. To see this, observe that
since an odd translation transforms x' into x°, a ceiling shifted together
with the configuration vertically by an odd heZ will be a natural ceiling
only after changing the configuration on it. In other words, from the
configuration of a wall one can infer whether the wall matches outside
ceilings only on odd (resp. even) levels. Thus, we have two types of ceilings
according to the parity of their level.

Coming back to our situation, let us recall that if U is a cylinder with
finite base, then there is a unique Gibbs state pf#(-|y) in U under the
boundary condition y .=yl by Lema 2.1(ii). We shall consider its weak
limit over the net of cylinders U < Z" with finite bases ordered by inclusion
(notation Iim fin cyl). By the weak limit we mean a limit on all continuous
functions on X, or, which is the same in our case, a limit on cylinder
functions on X, ie., such ¢: X —» R that there exists a finite 4 < Z” such
that if x,ze X, x,=z,, then @(x)= ¢(z) (¢ is living in A). By a constant
c=c(v, |S], R) we shall always denote the constant from the estimate
[Apendix B, formula (B.10)] on the number of contours of a given length

{yelK a0 |[IN=n}|<c”

Let us introduce also a “thickness” of I, by r=|n({i})|/2R for any i€ Z"
(notice that 1> 1).

Theorem 1. Let v>3 and let H= {¢ ,} satisfy the conditions (I),
(CP), and (WP). There exist constants c¢,=c;(v,|S|, R ¢) and c,=
¢o(v, IS], R, t) such that if fp,>c,, Bpo>c,, V=Z' is a cylinder (not
necessarily with a finite base), and {¢ ,} together with B satisfy (S), then

p=lim fin cyl pf/(- y)
exists.

Moreover, u is a Gibbs state in V and (i) is extremal in the convex set
of Gibbs states in V, (ii) is horizontally translation-invariant, (iii) is not
translation-invariant, and (iv) p-almost every configuration xe X has a
y-interface 1(x).
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The above theorem is a direct consequence of Theorem 2, which
inciudes a more detailed description of the state p [it is natural to denote it
again by uf(-| y)]. Its proof is given in Section 6.

Our actual estimates (surely not optimal ones!) lead to the values

3 log(2R + 1 3
cl=4+<§+t) 1og(2c)+v—§(———)+<

QR+1) §t+l>log2

log[3e(v—1)]
LAy

i 1
¢, = 3"+ log(2¢) + max (5, 2 +log 2 +M>

2R

with the constant ¢(v — 1) steming from an upper bound [¢(v—1)]" on the
number of connected subsets in 7"~ ! of cardinality n containing a fixed site
in 2*~*' [cf. the discussion of (B10) in Appendix B].

Let us remark that, as in Ref. 10, it can be shown that the state y also
can be gained by a limit over rectangular parallelepipeds with the ratio of
their sides within certain bounds.

Referring to a situation typical for the application of the Pigorov-
Sinai theory, which is explained in some detail in Section 3.1, we have the
following straightforward Corollary of the above Theorem and
Proposition 3.3.

Corollary. Let v>3 and let H, satisfy the assumptions (I), (CP),
and (WP) with respect to a collection of its translation-invariant ground
configurations {x',.., x"} and let H,, s=1,.., r— 1, satisfying (I) be such
that H,=H,+3 pu H, completely removes the degeneracy (see Sec-
tion 3.1). Let us denote K=sup,_, ,_ |H,| with

IH || = sup |E;(x)|

ie?®

and consider ¢ <min(p,/2K, p,/(1+21)K), B(p, —2Ke)>c,, and B(p,—
(1428) Ke)>c,.

Then there is an (r— 2)-dimensional surface S, in the ball Uy(e)=
{ue R~ X |u,| <e} in the space of parameters, such that whenever y e Sg,
the Hamiltonian H, together with the (inverse) temperature f satisfies the
conditions (I), (CP) with the constant p, —2Ke, (WP) with the constant
p2— (1 +2¢) Ke, and (S), and the statements of Theorems 1 and 2 hold.
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2.4. Interface in Terms of an Admissible Family of
Standard Walls

To state Theorem 2, we shall need some additional notions.

Definition 2.4. A pairw=(W,x,)with WaZ’and x, e X isa
standard wall if there exists an interface [, such that w is its only wall. We
denote by W the set of all standard walls. A family V of walls is compatible
if m(supp w,) and n(supp w,) are distant whenever w,, w, € V. The set of
all compatible families of standard walls will be denoted by # . If
w= (W, x,,) is a wall, then I,\z(W) has one infinite component, to be
denoted by Ext,(n(W)); Int, (n(W)) = I)\(n(W) U Ext, n(W)). Let w, and
w, be compatible walls, W, =supp w,, k=1, 2. We say that w, is inside of
w, if 7(W,) < Int,(n(W,)). The set E(V) of external walls of a compatible
Sfamily V of walls is a subset E < V of those w e V for which w' # w implies
(W) < Ext,(n(W’)). The set of all families V € #7°° such that E(V)=V
will be denoted by #°°. A compatible family V of walls is admissible if
every wall from V\E(V) is inside only a finite number of walls from V. The
set of all admissible families of standard walls will be denoted by #°* If V
is a compatible family of walls, we denote supp V=), .y suppw and
IV =[supp V|.

We prove the following in Appendix A:

Lemma 2.2. (a) For every wall w there is one and only one
h = h(w) e Z such that the shift 7, w is in W. The shift 7,w is called w in
the standard position.

(b) The mapping that ascribes to an interface [ the collection of its
walls in standard positions (W(-)) maps .#, the set of all interface, into
W, It is one to one from £2=W " !(#*) (to be called the set of
admissible interfaces) onto #7%.

Let us note that the existence of just one type of ceiling is crucial for
this lemma.

2.5. A More Detailed Description of the Interface Gibbs State

Consider now the set #7(}V) of all families 6 of mutually external
g-contours such that suppfccV, with V<=Z’ not necessarily finite.
Recall that two contours y,, y, are external if (Exty,)° and (Exty,)¢ are
distant. Let us observe that the set of all subsets of I, may be identified
with the compact metric space {0, 1}"« Endowing it with its Borel o-
algebra, the set J#"5(}) may be identified with its measurable subspace.
Similarly, the sets #°°° and #7*~ .#* may be considered as measurable
subspaces of the space of subsets of the set of all standard walls. We denote

F(V)={1eF|l=x,x y,) for some x,€X,}
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whenever V< Z*. If V is a cylinder, ie., # ~'(V) =V, then it is easy to see

that

f(V)={[Ief

U we VR}

we W(l)

Let | =(Z, x;) be an interface. In Definition 2.2 we introduced the R-
components V,(I}, V,(I), and Int, I of I°. Let us consider 0,€ A" (V (1)),
g=1,2, and denote

J=<U Int, I)u( U Inty)

yetub

and J° the maximal subset of J which is (R4 2)-distant from J°. By
X(1, 8y, 8,) we denote the set of configurations x € X such that I(x)=1, and
the set of external contours of x inside V(1) is 0, g=1, 2. Let us observe
that X(1, 8,, 0,) is nonempty and whenever xe X(1, 8,, 8,), its restriction
x oy to Z\J° is fixed. The set J° has only finite R-components and thus,
according to Lema 2.1(i), there is a unique Gibbs state in J° under the
boundary condition x . Let us denote it by u(-|1, 6,, 8,) and note that
w(X(,0,,6,)|10,8,,0,)=1. The following theorem is a refinement of
Theorem 1.

Theorem 2. Let the assumptions of Theorem 1 or its Corollary be
satisfied. Then the limit

whA(-| yy=1im fin cyl uf7(-| )

exists and there exist probabilities P7 on #2(V) for cylinders ¥« Z” and
P, on A75(V), g=1, 2, for arbitrary V' < Z”, such that for each bounded,
measurable function ¢ on X

weln= Ppan| 111, 0,,0,)
(V) A

VI x A5 (VD)
X [P? V1(1)(d91)®P§, V2(1)(d02)] (2.1)
Moreover, if we take

t<pp -2

log(2R + 1
w<fp, —|:3+log(2c)+2v—0g(——+—)]

2R+ 1)

1 t
@ <min(fp, ¢y, ﬂpz‘cz)+§103(2c)+§10g 2
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then: (i) Denoting p7(V) = PL({l € #(V)|W(l) > V} whenever
Ve#w!(V)and Vis a cylinder, we have:

(a) po(V)<exp[—(20—tlog2)|V|]
(b) 1p?,(V)=pl (V)| <dexp[—(d—1log 2)| V||
—ad(supp V, V, = V)]

whenever V|, V, are cylinders, V|~ V,=(V\V,)u(V,\V,) is their sym-
metric difference, and V € # (V' n V).

©) PPV 10 Va) = pP(Vy) (Vo)
<3exp[ —(@—1tlog2) |V, 0V,
—4@d(supp V, supp V,]

whenever V, U V, e # (V).

(ii) Similarly, denoting

po0)="P; ({0 (V)10=0})

whenever 0 e #°(V) and V< Z', g=1, 2, we have:

(a) pg (0)<exp(—t1|0])

(B)  105,1,(8) ~ 95, 1,(0)] < exp[ 0] —wd(supp B, ¥V, + V)]
whenever V,, V,c Z*, e A (VN V).

(c) lpg W00 80;)— P, WA01) P, (02)]
<exp[ 16, v 8,ll —wd(supp 6,, supp 0,)]

whenever 0, U 0,e A (V).

Remarks. The probabilities P¢, are actually the contour model
probabilities corresponding to pure stable phases and constructed in the
Pirogov—Sinai theory (see Section 3, and Proposition 3.4 in particular, for
more details).

The most interesting case is when V'=2". The formula (2.1) is also
useful for cylinders ¥ with finite base, since it may be combined with
estimates (b) to control the speed of the convergence of uf”(-|y) when
vV Z.



768 Holicky, Kotecky, and Zahradnik

2.6. Surface Tension

To formulate a statement about the existence of (the thermodynamic
limit of) surface tension (interfacial free energy), let us consider the cylinder
Ve={i€Z"|(is,..,i,) € B} when B< Z"~" is finite.

Theorem 3. Let v>3 and let § and H={¢,} satisfy the
assumptions of Theorem 1 (or its Corollary). Then the limit

1
o= lim -——hm fin cyl log
B/g" LB ]

{Z(U] y"?; BH)
[Z([UF\Z(I VINUo) e\ x5 BH) Z([LU N Z3(1o) \(Lo) x| x*; BH)] '}

exists and is

B m({i})
o= —p Acz(:lo)k P 4y) [2(A)]

Aox{i)# B

+4

where ie 7’ is arbitrary and A4 satisfies the inequality
|4] < [exp(— @)+ 2|n(i)| exp(—w)]
with w, @ from Theorem 2.

Remarks.
1. The limit B~ Z°'~' is considered in the van Hove sense,
|8B|/|B| — 0. An explicit formula for 4 is given in Proposition 7.1.

2. The case v=2 has to be studied by slightly different means and it
was considered in Ref 6, where, supposing the existence (proven for
ferromamgnets) of the limit, the inequality |o| = K was proven.

In Ref. 6 a tacit assumption that the interaction {¢,} is reflection-
invariant was used. It was needed, e.g., to prove

Z Pi(X) - Z PI(X) =

in the formula (3.2) from Ref. 6.

3. We use here a different normalization than that used in Ref. 6;
namely, we use the normalizing factor

Z(U(Io)\Uo) || x*5 BH) - Z(U(Io)\ (o) £ 1 x*; H) (*)
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instead of the factor (used in Ref. 4)
(Z(U|x'; BH) - Z(U | x*; BH))'? ()

The difference between (*) and (*#) is not essential in the case when both
the finite cylinders and the interaction are invariant under reflections with
respect to I,. In the general case the factor (x) sems to be more suitable
[than (*x)], since it satisfies the natural requirement that the value of ¢
should not depend on the concrete “shape” of U.

3. REVIEW OF THE PIROGOV-SINAI THEORY

In this section we present notation and recall some statements of the
Pirogov-Sinai theory? in a form used in our proofs.

3.1. Partition Functions and a Connection with
Contour Models

First, it is easy to verify a connection between the “diluted relative”
partition function

0V |x%pH)= Y exp {~—ﬁ y [goA(x>~<pA<x4)]}

Xpe= Xl{/c
B(x)ccV

used by Pirogov and Sinai and the “physical” partition function
Z(V|x% BH) introduced in Section 2.1.

Lemma 3.1. Let V<=Z' be finite and Vg= {i|d(i V)<R+1}.
Then

O(V|x%; pH)=exp[fe(x") V1] ).  exp[—BE,(x)]

xp0= .Y?/[
B(x)ca V

and

AN Vg

20V 1% Bt =exp | B3 ,x)

Ao Ve

_ ﬂe(x")fVRl] OV x| x% BH)

If y is a g-contour, Pirogov and Sinai introduce the “crystal” partition
function of y by

0 BH)= Y exp {—ﬁz [m(x)—m(xq)]}

O(x)= {7}
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The following proposition summarizes the main statements of the Pirogov—
Sinai theory. For a short review of the theory of contour models (“polymer
models”), see Appendix B. In the following we use the results and notations
from it in a substantial way. Note in particular that by a contour
functional @(y) we denote the weight (“fugacity”) of the contour y and,
thus the partition function Z(V{¢,b) of a contour model & with
parameter b >0 is defined as

ZV|®,b)y= Y exp (b

de X V)

U Int yD ®(0)
y e 8(8)

where @(0)=11,., D(7). By the constant ¢ we again denote the constant
from the estimate (B10) on the number of contours of a given length.
Introducing the constant

c3=c3(v, |S|, R)=3+1log(2¢)+ [v1Iog2R+ 1)1/ 2R+ 1)’
we have the following result:

Proposition 3.2. Let H={¢,} satisfy the assumptions (I) and
(CP) with respect to a collection of translation-invariant configurations
{x',.., x"}. Whenever fip, >c;, there exists for every g =1,..,r a contour
functional @, and a parameter b, >0 such that:

i &
1=fp, —2
(i) For each ye K, one has

0(y; BH) = [exp(b,|Int y|)] ®,(y) Z,(Int y; D)

and (thus) also

, is a r-functional, |®(y)l<e " for each yelk,, with

O(VIx% BH)=Z,(V;D,, b,)
for each finite V<= Z".

(ii) min,_, ,b,=0.
(iv) The limit p(H)=1lim{log Z(V|x; BH)]/| V|, with V' » Z" in the
van Hove sense, exists for every x e X (and does not depend on x) and

b, — Be(x?)+ p(®,) = p(H)
for each g=1,.., r.

(v) Denoting

Y, (U)=log @(V|x? BH)— [Be(x?) + p(BH)]|U|
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we have
¢, (U)] < {exp[—w(2R+1)"1}|0U]

with w = fp, — ¢; whenever Uc Z" and g€ {1,.., r}.

Proof. For (i), (ii), and the equality b,— fe(x?) + p(®,) = o with «
such that min,_, ,b,=0 see Refs. 1 and 2. For the computation of ©
from (i) we used the version of Ref. 13 combined with estimates (B12) and
(B4’) from Theorem B.2. Considering then ¢ with 5, =0 and observing that
the limit

log Z,(V; Q')q): &
i p(P,)

exists [ Theorem B.2(iv)], the existence of the limit in (iv) as well as the
equality a= p(fH) follow from Lemma 3.1. The statement (v) plays an
important role in this theory. It folows from the inequalities

0(V|x?; BH) exp[ —Be(x?) |U| — p(BH)|U|]
=Z,U; D, b,) exp{—[Pe(x*) + p(BH) 11U} }
SZ(U; @,) expl (— phe(x?) — p(fH) + b,)|U|]
<exp[ —pe(x?) +b,+ p(P,)— p(BH) +d - |0U[]
=exp(d-|0U])

lim

where we used the key estimate
Z U, @,)<exp[ p(®,)|U] +d|oU|]

with d=exp[ —w(2R + 1}"] following from Theorem B.2(iv).

The Pigorov—Sinai theory also contains a statement about the full
phase diagram in a neighborhood of a Hamiltonian H, with translation-
invariant ground configurations x',..., x".

A configuration xeX is called a ground configuration of H if
24 [©4(2) ~ @ 4(x)] >0 whenever z is a configuration differing from x only
in a finite V=Z" xypc=2z,.. Consider now a Hamiltonian H,= {09}
satisfying (I) and a set of translation-invariant configurations {x',..., x"}
such that every x% g=1,.,r, is a ground configuration of H,. Let
further H = {¢%}, s=1,.,r—1, be additional Hamiltonians (“external
fields”) fulfilling (I) such that the Hamiltonian H,=H +Y u H,,
L=y s b 1) ERTY completely removes the degeneracy of ground
configuration of H,. Namely, denoting by e,(x?) the specific energy of x?
with respect to H,, we have that the mapping

u—e,(x?)— min e, (x™)
m=1,.,r
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maps the space of parameters R ' onto the entire boundary

0,={b|b=(b,,.,b,), min b =0}
g=1

of the r-dimensional positive octant. Recalling that

[H| =sup sup |E;(x)|

ieZ' xeX
we have the following result.

Proposition 3.3. Let H, satisfy the assumptions (I) and (CP) with
respect to a collection of its translation-invariant ground configurations
{x1,.x,} and let H;, s=1,.,r—1, fulfilling (I) be such that H,=
Hy+ 3 u,H, completely removes the degeneracy. Let us denote
K=sup,_, , ;|H,| and consider ¢<p,/2K and f=(c3)/(p, —2Ke).
Whenever pe Uy(e) = {peR" ™' X |u,| <&}, the Hamiltonian H, satisfies
the assumptions of Proposition 3.2. Then, denoting {b,(u),.., b,(n)} the
corresponding parameters, the mapping p— {b(p).. b ()} is a
homeomorphism of Uy(e) into O, such that the image of U, contains a
neighborhood of O e 0,. Moreover, to every b, (1) =0 there corresponds
an extremal translation-invariant Gibbs state of H, (at the inverse tem-
perature f); the number of all different extremal periodic Gibbs states of
H, equals the number of vanishing parameters b,(u).

Proof. If H, satisfies (CP), then Hy+ > u, H, satisfies (CP) with the
constant p=p, —2K(3 |u,|) = p, —2Ke whenever ue Uy(e). Then one uses
Proposition 3.2 and follows the proof of Main Theorem B in Ref. 1. For a
proof that the set of extremal Gibbs states corresponding to b, =0 exhausts
the set of all periodic extremal Gibbs states see Ref. 14.

3.2. Description of Stable Phases

We shall use a more detailed description of stable phases, 1.e., Gibbs
states corresponding to vanishing parameters b,=0. The following
statement is essentially contained in Ref. 1 and especially in Ref. 2. An
explicit expression of the form (3.1) appears in Ref. 15.

Proposition 3.4. Let the assumptions o Proposition 3.2 be fulfilled
and let ge {1,.,r} be such that b,=0 and V< Z". Then there exists a
Gibbs state u in ¥ and a probability measure P, on A 5(V ) such that
for every bounded, measurable ¢ one has

weo)=|  upl0) P, (db) (3.1)
HVR)
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where p(-|0) is the unique Gibbs state in J°(0) under the boundary
condition x gy, where

ﬂ(@)z{iEZ“]d[i,(U Inty)c]>R+1}

and x is such that 8(x)=6. Moreover:

(i) pis a weak limit of pff(-|x?) over finite Uc V, ordered by
inclusion.

(ii) Denoting A0, V) = {8 e A(V)|0 >0} and pg,(0) =
PJ(A (0, V)) whenever 6 e #"¢(V), and taking 1= fp, —2 and

viog(2R+1)

@=Fpr—es QR+ 1)

we have:
(a) p5 (0)<e ™!
for every O e A75(V).
(b) 105 1, (8)—ps 1, (0)]
<10 exp[ —7l|6] — wd(supp 0, V' + V)]
for every V,, V,=Z” and Oe A (VN V5).

(c) 1pg A8, w8)—pg 1 (0,) pg 1 A0,)]
<6, w0, exp[—1]10, v 0,] — wd(supp 8, supp 9,)]
whenever 6, U 0,e A (V).
(iii) - There exist « >0 and K> 0 such that
(@) (@)= (@)l <K|A4] || exp[—ad(4, V,+ V)]
whenever ¢ is a cylinder function living in 4 [ie., ¢(x)=¢(y) whenever
X4=y4l
(b)  {uul@192) — (1) 1y(@,)l
SKJA v Ao oyl el expl —ad(4,, 45)]
whenever ¢,, ¢, are cylinder functions living in 4,, A,, respectively.

Proof. Let $, be the t-functional from Proposition 3.2. According to
Theorem B.2(iii), there exists a measure P, ,, on A 3(V ) that recovers its
correlation functions p, (0] ®,). Introducing a map #"2(Vz) — H 5 (Vg) by
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attributing to each deJ3(Vg) the set of its external contours
0(0)e A ;(Vg), we may define the measure P ,, on A¢(V,) as the image

of P, ,, under this map. Let us observe that for finite U one has
Z (K UNLLO1])
pou(0) =2 (0) —
v ! Z(K,(U))
=¢q(0)exp[— Q)Z(C):I

Ce X HURCAIL011#

where [[6]]={yeK,| either 710 or there exists ye€60 such that
suppj<Inty} (see Appendix B). Taking into account the estimate (B4')
and the fact that

log(2 1
1Cll <exp [V—O—g-(ii—) ncn]

QR+ 1y

since |C|| = (2R+1)", we get the bound

) DI(C) e”ICl < Y [BT(C)] ] et <

Uyec(suppywinty)ai supp Co7

by similar reasoning as when proving (B.13).

Hence, taking into account the positivity of @ (6) and the inequality
le* — e”| < max(e”, e’)|u—v|, one easily verifies (ii).

To prove (i) and (3.1), let us consider a cylinder function ¢ living in
A< Z” and choose ¢>0. We shall prove that for Uc V finite and large
enough,

Ko X =] uo]0) Py, db) | <clo] (32)

Aol
From Proposition 3.2(ii), Lemma 3.1, and the fact that b,=0, one easily
verifies that if U< Z" is finite, then

Z(6;9,)

o x4)= Y ﬂ(fplg)m

eex;(uk)

= w(@|0) PGy, u(|0) PGy (dD)

A (UR)

Hence, to prove (3.2) means proving

{ [ w10 Py @) —[  u(el0) Py, (d0)| <zlol  (33)
HHUR) HVR)
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for U large enough. Whenever 0 € ¢, we shall consider a subset 6% = 8 of
those y = 6 for which |y| <k. Denoting by #'¢(4, k) the set {0 e.#7¢| there
exists yef such that 'm A# & and |y| >k}, we get, using (ii)(a), the
estimate

[ Cato10)— (@ 10%)] P o(d0) <2 9]l P (A 504, k)

<2 ol 14l e~ < gelol

whenever UcZ", and k is large enough. Having chosen such k, the
estimate (3.3) will be verified if we show that

1
)je wp109) P d0) =] u(9]0) Py, (d6)| <5elel (34)
A (UR) A AVR)

q

for U large enough. Observing that u(¢|0%’) is a cylindrical function living
inA,={ieZ"|di, Ay <k} [ie., if 0, 0, A"5 are such that 0, NI (4,) =
0, NI, (A,), then u(e|0%) = u(p | 65°) ], the estimate (3.4) follows from the
weak convergence lim,, . , P, = P, [Theorem B.2(iii)]. According to
(3.2), thus lim,, , , u8H(p|x9.) exists and is equal to

[ uel0)P;,,(0)
HE(VR)

It is clearly a Gibbs state in V. Validity of (3.1) for all measurable, boun-
ded ¢ then follows from the fact that both sides of (3.1) have unique exten-
sions from bounded cylindrical functions to bounded measurable functions.
Finally, to prove (iii), we first realize that replacing p¢ ,(0) in (ii) by
pz; V,A(O) = P:(%g(ea V’ A)) WIth
A0, V; A)={0e A6, V)|yed\Oimplies (suppyuInt y) N A= 2}
we get similar estimates:
(a") PG r.a(0) <exp(—1]0})
() 10501:4(0) = pg.rr. 4(6)]
<110] max(pg, vi; 4(0), Po vy a(0))
xexp[ —wd(supp 8w V, V= V,)]
(C,) !pz, ViAy \_/Az(01 o 82) - p;, V;Al(gl) p(e/, V;AQ(HZ)I
<16, 00, max(pg y. 4, 4,(01 0,), P5 v.4,(00) P51 4,(02))

xexp[ —wd(A4, usupp 8,, A, usupp 6,)]

822/50/3-4-20
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To prove (iii)(a), we notice that P} (A"5(4, k)) < | 4] e~ “* and realizing that
O e A \A (4, k) such that (supp y v Inty)n A #  for each y e 6 implies
[0 <|A|k%, we get

|ﬂV1(§D)_NV2((P)|
<2 ol 4] exp(—wk)

+ > 1@ 10)1pg v, 4(0) =g v, 4(6)]
8 HNH LA, k)
yef=(suppyulnty)nA# &

<2l 14] exp(—wk)+ o] |4] k* exp{ —w[d(4, V, = V;) - 2k]}

x ) 095, 1. 4(0) + 5,1, 4(0)]
0 H\A Y A, k)
yel@=(suppyulnty)nA#g

<ol 14] (2 exp( —wk) + 2k" exp{ —w[d(4, V,+ V,) —2k]})

The last inequality follows upon realizing that the sets #75(6, V; A4) are

disjoint for different 6 e A \A (4, k) such that (suppyulnty)nA+#F

for every y € 6. Taking k=1d(A, V, + V), we get the desired estimate.
The estimate (iii)(b) is proved in a similar way, using (ii)(c’).

4. PROBABILISTIES OF INTERFACES IN TERMS OF A
CONTOUR MODEL

In this section we introduce certain new partition functions Z obtained
from Z by dividing it by suitable “normalizing” factors. The advantage of
these new partition functions will be the possibility of rewriting them in a
form very close to that one used in contour models, such, moreover, that
the “contours” [these will be defined as some “aggregates” of walls and
clusters of 1- (2-) contours] will “live” near [, i.e., an essentially (v—1)-
dimensional contour model will be obtained.

In Section 4.1, we define the normalized partition functions Z and
rewrite them in Lemma 4.4. In Section 4.2, we pass to an infinite cylindrical
volume. We define the notion of an aggregate and formulate and prove
Lemma 4.9.

4.1. Expression in Terms of Walls

In this subsection V'« Z’ will always be a finite volume. In Appen-
dix A we prove the following result:

Lemma 4.1. Let v>2 and let x,= y, except for finitely many ie Z".
Then x has an interface.
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Note that whenever [ = (7, x;) is an interface of a configuration x that
differs from y only on V, then e #(V) (cf. Section 2.5). Let us denote by
Int(]) the union of finite components Int,(7) of the complement of supp(l)
and recall that by V,(I), V,(I) we denoted the intersection of Z3}([), Z5(1),
respectively, with V. We note also that for any « there is m(a)e {1,..., r}
such that x,=x"{#} whenever ielnt, (/) and d(i, )<R+1 or iel and
d(i, & Int,(I)) < R— 1. It follows from this observation that £, (x) depends
only on x, whenever x is a configuration such that l(x)=(/, x,) and Uc L
We use the notation E (1) in such cases. Suppressing SH in the following
notation, we have the following result:

Lemma 4.2. Z(V|y)=Y,. s, Z(1, V| p), where

ANV,

20,13 =exp| ~BE D48 T puln)

Acye

-2 ﬂe(xq)qu(I)l] [T 0V, (D]x7)

g=1

x [Texp[ —Be(x™) [Int, (D[] 6(Int,(1)| x™)

Proof. We choose an interface | = (7, x;) e #(V) and consider any x
with = [0(x). One proves Lemma 4.2 easily using the equalities

ANV,
Hy)=Ep(x)— 3 m(x)'—;,-—‘

AN Vr# S

=K, VR(X) + EVI(I)(x)

(AN Vgl
+ Ev, (X)) + Erngny i vglX) — Z @ 4(x) .
Ac Ve [A]
ANVep# &

and Lemmas 3.1 and 4.1.

Now we shall extract from Z(l, V| y)} some terms that do not depend
on the interface .

Let us denote Vo=V (I(y)) and 0V =0Vgn0V,4, g=1,2.1f C is
a cluster, we always write C instead of supp(C) (see Appendix B for
corresponding definitions). We write C,q if there are i, je C such that
li—jl=1, ied?Vyg, jeV%. Let us put y (C)=1if C,q and 1, (C)=0
otherwise. Let lo=(Zy, y5,) = (1(¥) yi,y)-

Before continuing in the expression of the partition sum we should
emphasize that we suppose that the assumptions (I), (CP), (WP), and (S)
are satisfied. Since- we shall rely on the Pirogov-Sinai theory, we always
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suppose that the assumptions of Proposition 3.2 are fulfilled. In particular,
we suppose that the inequality Bp, >c¢; holds. The following lemma is
based on the fundamental expression (B2):

Lemma 4.3. If le #(V), one has

Z(1, V| y)_ ~
Ny =Z(, Viy)
=exp{ —p(BH)( I V| = Iy Vg|)
_ﬂ[Elm VR(”)_EI()(‘\ VR(HO)] +Z Wm(a)(lntcx(l))
2 T ICnV,] ICHVRJ:I}
— PN(C -y (C)—rr—
Lk o |1
Cnl#
where

NV y)=NV|y) - Nyo(V]y) - N(V|y)
with the “volume term”

N,(V|y)=exp[ p(BH)|V|]
the “surface term”

|40 Vgl
4]

Acve

NS(V|y)=exp[p<ﬁH)|VR\V|+/3 Y 0y

_Z Z gqu(C)’C_nV_R_[]

g=1 Ce%’;l [C|

and the term extracted from Z to get the comparison with the flat interface
I, is

N (VI y)=exp[—p(BH)| 1o 0 Vgl — BE s~ 14(l6)]

Proof. One substitutes 3c.ccy ) Pr(C) for log O(V,(I)ix?)
according to Proposition 3.2(ii) and (B2),

Dr(C
| o - 3 22 v
D(C)|ICnV,|

=PIV, (DI~ ¥ <

C:CnVy#J
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for —Be(x?)|V (I)| according to Proposition 3.2(iv) and (B11), and

exp Y, (Int,(1))]

for
O(Int, (1) | x™ ) exp[ — fe(x™ @) [Int (1)} + p(fH)|Int,(I)|]

according to Proposition 3.2(iv).
We use the notation

E(W):ﬁ(EW(W)”En(W)(ﬂo))‘f'P(ﬂH)UW| (W +Z 'ﬁm(a) (Int (W)

The notation Int (W) stands for Int (7} if x e N(W)= {«|Int(I) is a finite
component of W} whenever W is the support of a wall of | with the sup-
port 1. It follows from the geometrical structure of walls (Lemma A.3) that
{N(W)} form a disjoint decomposition of the set of all « used as indices in
the notation of components Int,(/) of Int(Z). Using this notation, one
immediately gets from Lemma 4.3 the following result:

Lemma 4.4.
Z,Viy)= [l exp[— E(w]exp{ Z DI ()
we W{l) 4=1 Ce f°
Cm[#@
[C V] [C Vi
[ o O g ]}

for an [ = (1, wy) e F£(V).
To be more precise, we notice that W« V', for a wall of an interface
le #(V) and therefore

E(w)=B(Ey . VR([I) —E wyn VR(”()))
+ p(BHY(IW A Vgl — [n(W)n\ Vil)
+ 3 Wma(Int (W) 0 V)

and then use Lemma 4.3.

4.2. Expression in Terms of Families of Standard Aggregates

Now we pass from the case of a finite volume to an investigation of a
cylindrical volume V with a finite basis B< Z'. Let us note that since
AH(.] y) is unique [Lemma 2.1(ii)], we have

hm il yy=ufH (-1 y)
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where we consider the weak limit over the directed set of finite volumes
UcV.
Let us consider a finite, nonempty Uc V.

Lemma 4.5. Let fp,=2c, and fp,=2ci=c,(v,|S,R)=3"+5+
log(2c¢). Then:

(a) There exists Kz: #(V)— R such that Z(1, U| y) < K(I) for any
le F(U) with 3, _ () Kp(I) < 0.
(b) There exists a finite limit limfin cyl, , , Z(l, U] y) and it equals

Z(1, V|y)=exp{— Yy E(w)

we W(l)

=1
Cr\[#@

where V,, x, are defined as before.
(c) The probabilities Py, of interfaces from .#(U) defined by

Z(1, U\ y)

PN =1 = PE) =5 s
I"e #(U) 4

converge to a probability on 4 (V) (to be denoted by P7) which is defined
by Z(I, V] y), ie

Z(L, V] y)
ZUEJ’(V) ( Viy)

Py(l)=

Proof. We see from Proposition 3.2(iv) that for any ge {1,.., r}
E(w) = B(Ey(w) — E (o) —e(x)[IW] — [n(W)i]
+ 2 Y (It (W) + [ (@) + b LW — [a(W)|T  (4.1)

Let us notice that, according to Proposition 3.2(i), the assumptions of
Theorem B.2 are satisfied for Bp,>3+log(2c). Thus, we can use the
estimates (B11) and (B4') to get |p(¢,)| <1. According to Proposition
3.2(iv), the sum 3, 1Y, (Int,(W))| can be estimated by 3, |0 Int (W)|.
Since for each element i of 0 Int, (W) at least one of its 3" — 1 neighbors
belongs to W, we have >, |4 Int (W) <3"| W]

If we consider the cases |W|— |n(W)| 20 and <O separately, we get
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[considering in (4.1) such ¢ that e(x?)=min, e(x?) or b, =0, respectively]
the inequality

E(w) 2 BEw(W) — Eom(lo) — mqin e(x)LIW| —[=(W)])

=3 W =W = (W)

Obviously, min, e(x?) can be supplied by e(x') or e(x?) in the last
inequality. Now the “Peierls condition” (WP) can be applied and one gets

E(w) = (Bp>—3") W] = [|W] = [=(W)]]

Using the expression for Z(I, U|y) from Lemma 4.4, we obtain the
inequality

20,01y <exp | - %m)[(ﬂpz-y)rW|—||W!—|n<W)||J}
x exp(41In Ugl)
with the help of the estimate (B11) again. We may write
Y W= m(W)1+ 11,0 Ugl
w e W()

instead of |/~ Ug| and conclude that

Z(1, Ul y) <exp {— Y [(Bos—3)1W —5|W|J}exp(4uom Usl)

we W(l)

= Kp()

because
4 W1 = m(W)) + W] — [=(W)] | < 5| W]

Obviously Kg(I) depends on B, I,,, and R, but actually not on U. The sum
can be bounded in the following way:

Y Ky

le s (V)

Sexp(dilonVel) I X exp[—(Bp,—3"—5)IW]]
ielpn Vg weW
ie W

The support of walls are connected sets and therefore we can use the
estimate already used for contours:

Hw| Wi, [W|=n}| <"
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Hence
Y exp[—(Bp,—3" —5) W]
< 3 el (fpa-3=5)n]
_ Leexpl—(Bp,~3"— 5>J}’” <1
ST—copl—(Bps—3-91
if
Bp,=log(2¢)+3"+5

We introduced the concepts of walls, standard walls, and admissible
families of walls in Definitions 2.3 and 2.4. Let us introduce the notation
W(¥V) for the set of all standard walls with supports contained in V', and
the notation #°*(V) for the set of all admissible families V « W(V) of
standard walls.

We shall use Lemma 2.2 with the following trivial supplement.

Lemma 4.6. The mapping W(-): S -> % from Lemma 2.2
satisfies the equality W(F(V))=#"2(V).

Our next step will be to rewrite Z(l, V| y) as a sum over triplets T =
(To, T,, T,)e T (V) defined so that Toe# ¢/ (V), T,, T, are finite
subsets of A" or A0S, respectively, and the supports of elements of
T,, g=1,2, intersect V' and I(T,), ie., the suport of the only interface
[(T,) determined by T,. Let us use .7 instead of  (Z"), and let us agree to
use T,, g=0, 1,2, in the above meaning whenever T €.7. The following
lemma yields a base for rewriting Z(¥| y) in a form similar to the partition
of some contour model.

Lemma 4.7. Under the assumptions of Lemma 4.5, one gets for
le.#(V) that

Znviyy= [l e *™ > H 1 f4.4C)

we To=W(l) TeT (V). UW(To)=0 g=1 CeT,
where
CnV, (I cnV
1.4 =exp { ~o70) | 5200 02 o

whenever Ce %~ ;1.
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Proof. We use Lemma 4.5(b). According to Lemma 4.6, we know
that W(.#(V))=W(V). Therefore, it remains to prove the equality

- [CnV, (1) ]CF\VRi}}
or(c)| o a (o)A
e {- ‘E Ry o[ St w0 g

Cnl#g
2

= > IT I1 /1.4©)

(To=W(), T, Ty)e T (V) g=1 CeT,

This equality follows from the observation that

exp(Z a,,)zﬂ [(expa,— 1)+ 1]= ) I] (expa,—1)
nehN neN K< Nfinite ne K
for countable N if ¥ |a,| <oco. The inequality ¥, . |@(C)||[---]| <4
follows from (B4').

The set

< U wouy cuy C)
we Tg CeTy CeT;
is called the support of T=(T,, T,, T,)eZ and is denoted by supp(T) or
simply by T.

Let TeZ (V) and a=(ay, a;,a,), where agc Ty, a, < T, a,= T, are
such that

n(supp(a)) <U wou lJ Ccu lJ C)

w E ag Ceay Ceay

is a connected component of m(supp(T)). Then we say that a is an
aggregate of T. The triplet (a,, a,, @,) is called an aggregate (in V) if it is
an aggregate of some triplet from .7~ (7 (V). We again agree that a,, a,,
a, have the above meaning whenever a is an aggregate and we denote the
support of a by 4.

If & is the only agrregate of a triplet, a is called a standard aggregate.
The set of all standard aggregates from 7 (V) is denoted by A(V). We use
the notation (V) for the set of finite subsets of A(V) consisting of
standard aggregates such that for any two of them, say a, a, the set
n(supp(a)) u n(supp)a)) is disconnected.

The proof of the following geometrical assertion is scetched in
Appendix A.

Lemma 4.8. (a) For any aggregate a=(a,,a,,a,) of TeZ (V)
there is one and only one h=h(a)eZ such that the shift
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T,a=({T,wiwea,}, {T,C|Cea,}, {T,C|Cea,})is in A(¥). The shift
T,a is called a in the standard position.
(b) The mapping that ascribes to a triplet T € (V) its aggregates in
standard positions is a one-to-one mapping (A(-)) from . (V) onto (V).
Finally, we express Z(l, V| y) in terms of certain contour model in the
sense of the abstract definition from Appendix B. The assertions of the
following lemma are immediate consequences of Lemmas 4.7 and 4.8,

Lemma 4.9. Let us denote

@)= [T e * [T [ /% 1a0(C)

w E ag g=1 Cea,

whenever ae A(V) is a standard aggregate, and recall that V is a cylinder
set with a finite base. Then, under the assumptions of Lemma 4.5, one has:

(a) Z(V|y; BH)=Z(A(V); ¥")
where
501 e o 21y BH)
20| 3: BH) ==

[see Lemma 4.3 for the definition of N(V'| y)] and

ZAW;PH= 3 ] @

Red(V) aeR

(cf. Appendix B).

(b) P}{(”(\/))z Z pl\(V)(S; 'IUV)
Wiy v

where P is the probability defined in Lemma 4.5 and

pag(S; ¥) = [ 1 9%)] / AW ¥

seS
for Sed(V) (cf. Appendix B).

When proving Lemma 4.9 from Lemmas 4.7 and 4.8, we use the obser-
vation that if Te 7 (V) and a is an aggregate of T in standard position
[eA(T)], then f% 1,0 (C) = f% 47, (C) for Cea,, g=1,2, and C=T,C for
the only A€ Z such that T,a is an aggregate of T. We use this fact without
further comment in subsequent sections.
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5. STUDY OF THE AGGREGATE CONTOUR MODEL

In Lemma 4.9 we rewrote both Z(1, V| y) and P7(l) in terms of a con-
tour model with aggregates playing the role of contours and with the con-
tour functional ¥" for the cylindrical volume V with finite base. However,
these functionals depend on ¥ (for aggregates touching V¢) and this could
cause some trouble when studying the limit over V’s. One observes easily
that the definition of /¢, ;, and thus also of ¥”, can be directly transfered to
the case of arbitrary cylindrical volume V. Therefore, we may and shall use
¥ for any cylindrical subset ¥ of Z*, for example, 7" itself. In Lemma 5.2
we show that the assumptions of the functionals ¥ needed for an
application of Theorem B.1 are fulfilled. Moreover, it will turn out that the
corresponding inequalities are independent of V. Proposition 5.3 is a direct
application of Theorem B.1.

5.1. Contour Functionals WV

Let us recall that, given a cylindrical volume ¥ in Z°, the functional
¥" is defined by the equality (aeA)

W(a)=exp{— s Ew) [1 1 fqy,,w(«:)}

W € ag g=1 Ceay

where

Y _ B |Cqu(I)|~ [C Vg _
€ =exp { —og0)[ 0ty S0l |y

where C e "¢ and [ is the support of some interface I € #(V).

The assumptions of Theorem B.1 for the functionals %" are verified in
Lemma 5.2. For its proof we need the following estimate.

Lemma 5.1. Let fp, >c;. Then

Y 1 /4Ol explw]ClI<x
Cexd
ieC

whenever

2+log2 + log x
(2QR+1)"  (2R+1)

o< Pp;—es

and k <2¢? g=1 or 2, V is a cylindrical volume in Z*, I is the support of
some interface | € #(V), and ie Z".
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Proof. Taking into account that

Y Pl(C)exp@liC|)<1
Ce J(Zl
Cai
for @ =fp,—c; according to Proposition 3.2 and Theorem B.2, that
le* — 1| <e’|u] if |u| <v, and that the support of any cluster C contains at
least (2R + 1) lattice sites, we have

Y. Lf4.4C)| exp(@|Cl)
Cex?

Ce)ff,]
Csi

x exp(w|[Cl)

< ) 2e%|B](C) exp(w ] CY)
Ce){”f,l
Csi

<2’ exp[(w—@)2R+ 1)<k

Lemma 5.2. Recalling that we introduced the “thickness” ¢ by
t=|n{i}|/2R for any i€ Z", let us define

log[3c(v—1)]

=log(4
E=log(4c)+ t + 2R

Let fp,=c;. Then

Y exp(jn(4)|+wlial) P¥(a)<1

acA(V)
n(A)ai
with
lal= Y Wi+ Y ICJ
w e ag Ceajvay
whenever
2+log4

ré,ﬁp2—3“—t—é>

(1)<m1n (ﬁp1—03~m_

Proof. Let 2 denote the set of finite, connected subsets P < I, such
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that n(P)= P and, if a, is an admissible family of walls in ¥V, and Pe 2, let
I(ay, P)=I(a,) nn~'(P). Then

Y. exp(in(4)l +wlall]l ¥"(a)

ae A(V)
w(A)>i .
<Y @EplP) ¥ exp(wnan)exp{— » E(w)}
W
<1 T f9ne(©)=(D)

gq=1 Ceay

Using the inequality E{w)z (fp,~3") [W|—{|W|—|n(W)]| derived in
the proof of Lemmad.5, we have E(w)z(fp,—3"—1¢)|W|, since
[| W] —|rn(W)|]| <t|W]. Hence

()< Y (explPl) Y expl(w—Bp,+3v+1)]aol]

Pe? n(supp ag) < P
Psi age WAV)
2
X ) [T exp(@la ) 1T 159 100(C)l
(ay, ap)eBlag, P) g=1 Ceay
< Y (explPl) 3 explw—Pp,+3"—1—8)aol
PeP? age #2(V)
P n(supp ag) < P
— & la,, Pl
2
X > [T expllo+ &) la ] T 119 160(C)l
(a1, ay)e Blag, P) g=1 Ceay
=(2)

We use the notation B(a,, P) for the set {(a,, a@,)|(ay, a;, a,) € A(Z"),
n(A4)= P}, and in the last inequality we used the fact that ||a,| + ¢ a;|| +
tla,| = |I(a,, P)| whenever n(4)> P. According to Lemma 5.1 [using the
incquality w+1£<fp,~c;—(2+1og4)/(2R+1)"] and the inequality
w—fp,+ 3"+ 1+ <0, one has

)< ) (exp|Pl) ) exp[—¢|H(ag, P)I]
Pep ape #W3V)
Psi n(supp ag) < P

xI1T 11 f( Y A{expl(w+1)|IC|]} If"y,z(a,o)(GN)

g=1 jel(ay, P) k=0 \Cex{
Caj
<Y (expiPl) Y exp[—(&—log4)|Ka,, P)I]
Pez age WAV)
Poi a(supp ag) < P
< Y (exp|Pl) Y exp[—(E~logd)n]c"=(3)
pez n=|Plt

Pai
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where we used the inequality |I(a,, P)| = | P|/t and the fact that the number
of admissible families a, of walls such that I(a,, P) is conected, it contains
a particular site in d(n~'(P))n Iy, and |K(a,, P)| =n, is bounded by c”.
[This is the same estimate as (B.10) for the number of contours. ]

Since ¢ >log(4c), we have

xllostée)—)1 1)
()= L (exp 1P Togtde)—¢]

Pai

<2 ) exp[(z+]log(de)—&)|P|/1]

<2 i Le(v—T1)]"exp[(t+log(dc) — &) 2Rn] = (4)

n=1

In the last inequality we used the estimate
[{Pe?|P>i, |P|=2Rtn}|<[c(v—1)]"

(cf. B.10). Since

log[3c(v—1)]

7R + 1+ log(4c)

£

we have
exp{2R[1+log(4c)—&] +logec(v—1)}

1 —exp{2R[1+1log(4c)— &) +logc(v—1)} <l

(4)=2

Our last task in this section is to use Lemma 5.2 to get a version of
Theorem B.1 with aggregates playing the role of contours. We shall say
that aggregates a, and a, are incompatible iff d(n(supp a,),
n(supp @,)) < 1. Then we can use the notation from Appendix B with K
and & replaced by A and ; thus, e.g, d is the set of clusters of
aggregates. Let us take w(a) = [n(4)[; l(a)=llal| forae A, [C[ =Y ,.¢ [a]
for Ce ', and denote supp S =), supp a whenever S c A. Finally let
us introduce the constants

2+log4

cs=cs(v, S, R, t)=cy+ & +m

and
C6=C6(V, |Sla Ra t):3v+t+é

with ¢ defined in Lemma 5.2 above. Using this lemma and Theorem B.1
together with the Remark following it, we get the following result:
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Proposition 5.3. Let fip, =¢s and fip, = ¢4 and let V be a cylinder
set Z'. Then there exists a unique function ¥**": ' - R such that

log Z(B; ¥")= Y ¥"7(C)

Cea™(s)

for every B = A(U), where U is a cylinder set with a finite base, and that
for each iel, and w <min(fp, —cs, fp,— ¢¢), one has

Y 1PPT(C) el
a(C)si
Ceatdd

Moreover,
yrIC)= ) (=)' Pllog 2(D; ¥")
DeC

for every Ce .
For every S e/ there exists a unique function 4X: &’ — C such
that

pa(S:¥)= 3, 44(C)
Cead(m)
for every B < A and that

v w Tl « pla(supp S)|
|4<(C)) e Le
Cos

[1 #"(@)

ae$

The function A4 is given by
ALC)= Y, (—1)C=IPlp(S; )
DeC
and
Ag1u§z(61 uC,)= Agl(Cl) Agz(Cz)

whenever a, € S, U C, is compatible with every a,€ S, U C,.

6. PROOF OF THEOREM 2 AND THEOREM 1

6.1. The estimates of Section 5 show that our aggregate model is a
“well-behaving” model, exhibiting all the nice features of the contour
models satisfying the condition (B.4), in particular the exponential decay of
correlations.
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Our primary task is, however, a control over the behavior of the walls
of the original model. Thus, we have to “extract” relevant information for
walls from our information about the aggregate model. This is the aim of
this section and in pursuing it we prove here Theorems 1 and 2:

PIM)= Y pawy(S; ¥PY) (6.1)
Sed™(U)
W(S)=W(l)

6.1.1. We now prove that the correlations defined for V e % /(U)
by

p(V)=P{({le £(U)|IW() > V})
have the properties claimed by (a)-(c) in Theorem 2(i). The proof is based
on (6.1) and Proposition 5.3.

We shall use repeatedly the following estimate, which is a corollary to
Proposition 5.3:

Lemma 6.1. Let fp, = ¢5, Bp, = ¢, 0 < o < min(fp, — cs,
Bp,—cs), and let & < A*°, € = A, and a finite M = Z* be given such that
7(M)=M and a€ S implies n(A)~ M # J whenever S € . Then

Y Y 14YC) <2M exp[ —w(inf |C| +inf |IS]})]
Sc¥ Ce¥% 4 &~

Proof.

Y ¥ 144(C)
<Y ¥ lexp(—winf |C]) exp(@ | C)] 144(C)]

< exp(—0inf 1€1)] {3 fexp stsupp )1 TT 17(e)) |

S aes$

< {2 exp 2(supp S) exp(@ |SI)] [] la"”(an}

aes

x exp[ —w(inf |C|| +inf |S])]
€ 5

<H{1+ Y exp[n(A)+wua|i]\W”(a)|}

ieM a:ien(A4)

x exp[ — o(inf |C|| + inf S]]
<2MM exp[—w(igf ICll +igf 1S1H1
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Proof of Theorem 2(i)(a) for a Cylinder U with a Finite Base. Let
us denote the set ’

{Sed@*(U)|W(S)>V,aeS=>VnnW(a)#J}
by *°(U, V). Then, due to Lemma 4.9,
Pﬁ(\/)z Z pA(U)(S;(IIU)

Sea®(U, V)

Proposition 5.3 and Lemma 6.1 imply that

pi(V)= ). Y, 4Y(C)<exp[—(2w~1tlog2)|V|]
S e U, V) C@eﬁ‘;‘”

because S e A°(U, V) implies [ae S = n(4)nx (supp V) # ], 4L(C) #
0=CoS, |S|=|V| for S5ed (U, V), and |n(supp V)| <¢||V|.

Proof of Theorem 2(i)(b) for a Cylinder U with a Finite Base.

First we express the difference p7 (V)—p{,(V) using the notation
(U, V) introduced in the preceding paragraph.

pgl(\/)_pgz(\/): 2 PA(UI)(S;‘FU‘)

Sed®™(U;, V)

- Z pA(UQ)(g; g/Uz)

Sed®(Uy, V)

= X 2, 48(C)

SedU;, V) Cea%Uy)
(C>S)

- X Y, 42(C)
Se@®(Uy, V) CedNUy)
(Co28)

Since AY(C)=4Z(C) for suppCcU;nU,, suppScU,nU,,
according to Proposition 5.3, we get

p5, (V) —p7 (V)= % Y. 44(C)
SedO(Uyn Uz, V) Cea(Uy)
Cead(uy)

- 2 Y, 4(C)

Sed™(Uyn Uz, V) Ceai(Us)

C¢aciuy)
+ X Y, 4%(C)
Sea®(Uy, V) CedMNUy)

S¢aA®(Us, V) -

- X 2, 4g(C)
Sed™(Us, V) Cea(l,)
S ¢ AUy, V)

822/50/3-4-21
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We can estimate each of these four sums using Lemma 6.1 as in the
proof of (a) to get

105, (V)= p, (V)] <4 exp[ — (@ —tlog 2) V]| — @ d(supp V, U, + U,)]

Proof of Theorem 2(i)(c) for a Cylinder U with a Finite Base. The
difference p7(V, U V,)—p7(V,) p7(V,) is equal to

Y Y 44(C)

Se@™®(U, ViuVy) Cead(v)

—[ Yy Y Ag@ﬂ

S ed™(U, V) Cea(v)

Yy ayo)

Sye (U, Vz) Cea(u)

Due to the factorization property of AY formulated at the end of
Proposition 5.3, some terms can be cancelled out. Since 4Z(C)=0 when
C#4S and d(CyusuppS,, C,usuppS;}>1 when S nV,#J,
S;nV,# &, Ciosupp Sy, C;osupp Sy, |C,l <3d(supp V,, supp V,)
for g=1, 2, we have, denoting d(supp V,, supp V,) by d, the inequalities

pH(V,uV,)— Pﬁ(\/l) P‘Z(\/zﬂ

< ) Y. 144(©)
Sea®™®U, ViuV,) Cea(v)
1Tl =d/2

+< ) Y 144(C)|

Sea®U, V) Cead(v)
ICH = d/2

)
(£ 3 o)
)

Sea™U,Vvy) Cea(u)

W33 e

Sea™U, V) Cead(u)

x( DD M&DO

Sed®(U, V) CTea(v)
ICli = d/2

<3exp[—(w—1log2) |V, U V,| —jwd(supp V,, supp V,)]

The assertions (a)—(c) from Theorem 2(ii) follow from Proposition 3.4
for the cylinder ¥ with any base.
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6.1.2. We now prove the equality (2.1) for a cylinder U with a finite
base. The Gibbs state uf# is denoted by u in the following. Since #(U) is
countable, we can write

u(A) = [ u(411) dPE(D) (6.2)

where
wAn {x] 1) =1})
u({x]1(x)=1})

for p-ae. 1e#(U). [In fact, u({x|l(x)=101})>0 for any le #(U).] We
choose a fixed | = (I, x,)e #(U) [such that P{(1)>0]. Let xe X be such
that B(x)=1 Then u(-|1) is the Gibbs state in U(I)u UY(I)u (U Int, I)°
with the boundary condition x (recall that U°= {ie U|d(i, U°)> R+2})
because for any finite A = UI() v UY(I) and f bounded and measurable we
get

Al =

u(f 1) = plf % x)/m(xy)
U (f % )20 X ) B (dzlu)u(du)]/ (1)

- {J Uf(zA X 1 4¢) phH(dz | u)} Ka(u) u(du)}/u(xu)

= [[ £z ) bz | ) e 1)

where y, =Xz =1}-
Finally, we have
y({ZEXIZ(U?U)UUg(l))cZX(U?(l)uUg(l))c}| 1)
=u( =1

We use a direct generalization of Lema 2.1:

Lemma 2.1". Let V<= Z® be nonempty, ze X, and V=) V,, where
V, are such that d(V,, V,)> R for a ## «'. Let further (i) V¥, be finite, or (ii)
" be a subset of a cylinder set with a ﬁnite base.

Then there is the only Gibbs state uf7(-|z,.) in V with the boundary
condition z,. and we have

(-l zpe) = @nVuﬂVI |z V‘)@n(ul@ 6.(+)
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Here 4. is the Dirac probability with 6.({z})=1 and by =, we indicate the
projection of a measure onto X .
Let us consider now the uniquely determined Gibbs states “@121 (-]x%) in

=U)(I) with the boundary condition x¢ {0y for ¢g=1,2, and
”(Ulma ,)(( |x,) in (| Int, 7)° with the boundary condition (xu)((U,m(x oy
Using (ii) from the precedmg lemma the Gibbs state u is uniquely deter-
mined, it is equal to

R X ) ® A 5 Tt )
Since obviously

P Xhr) = T xlgy)
for ¢g=1, 2, one has

D) = g1 XD @ m i1 X7 @ oy, o M e ol 13%0) (63)

From Proposition 3.4 we know that

BACI = u(18,) Pyu(dd,),  g=1,2
Ho(Uy)

The restriction of the configuration xjgy (defined uniquely by the

requirement that the external contours of x be equal to 0,) to (U7)° is equal

to x;’Ug)‘- whenever 6,e€ #75(U,), and therefore

RGN = w10, P ldo)),  a=12  (64)
AU

Since 1 is firmly chosen and 6,e4°5(U/I)), ¢=1,2, we have,
according to Lemma 2.1'(i),

H("GI: 627 u)
:nu‘l’l‘('|91)®”U‘2’/‘('|92)®n(v‘1’u Ug)fli(ulmauw('un) (6.5)

Combining (6.2)-(6.5), one gets the equality (2.1) for a cylinder U
with a finite base.

6.2. Let VV be a cylinder (with a not necessarily finite base). The
inequality (i}(b) already proved for cylinder sets with finite bases implies
that the limit over cylinders with finite bases ordered by inclusion exists,
namely py =lim, , , p7. This limit is obviously nonnegative and satisfies
(a)-(c) from Theorem 2(i).

This finishes the proof of part (i) of Theorem 2. Part (ii) is known
from Proposition 3.4.
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6.2.1. One. realizes easily that, according to Lemma2.2, the
probabilities P, can be understood as probabilities on ¥, in fact on
W = W for cylinders U with finite bases. It follows from the existence of
the limit p7 =lim,, . , py; that P{, converge weakly to P7. Namely, the
probability P7 is defined uniquely by its values on sets of the form

My =V eW(V)=2WO |V AM=V}

for finite sets M =% (V) and V = # (V). Since

'%M,\/='ﬂ\/\\ U ﬂ\/u{w}
we M\V
where 4, = {V' e # (V)|V' >V} for V c M, the probability P{(.#,, ) is
defined by the expression
Y (=D)VTPY(My )

Ve MV

Note

N My (g = My for V v V' compatible

weV’

= otherwise

Since we have already proved that p — p7, we know that Py =
lim, , , P{, weakly in #°(V). It is simple to notice that PZ(# °(V))=1
[the set # (V)\# °(V) is covered by the countable union of sets of
families of walls that are “incompatible at i, je Z® for i, j neighbors”].

According to the inequality (i)(a), we can deduce that P (#7*(V))=1
similarly as we deduced the corresponding fact for contours in
Theorem B.2 (see Appendix B). We need only that the expression
2w —tlog2 from the exponent in the estimate (i)(a) of Theorem 2 is
greater than log(c) for the maximal w allowed in Proposition 5.1, i.e.,

2min(fp, ~ cs, fp, —cg) > tlog 2 +log(2¢)

This follows from the assumptions of Theorem 2. ,
Lemma 2.2 implies that the probability P is defined on the space
F4 (V)< #(V) of admissible interfaces.

6.2.2. It remains to prove equality (2.1). Since we know already that
(2.1) holds for cylinders U with finite bases, it suffices to prove that

[ PE@D) [ (o 11,0,,0,) P, 1,1y dB,) P, 1,(d65)
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converges to the right-hand side of (2.1) for any cylindrical function ¢. Let
us suppose that ¢ lives on a finite subset 4 of Z”. We consider the function

SO =20 [ 11,8y, 05) Py (d6)) PS, (D)

@ x &)
where
= {0, XU 0 Ap# B, 7€0,) = |1 <k}

and y()=1if weW(), WnAp,# @ =|W| <k and ()= 0 otherwise.

We use the same definition for f3(l).

It can be deduced from the estimates (a) in (i) and (i) that
§ PZ(d1) f%(1) converges to | PZ(dl) f3(1) uniformly in U.

Thus, it suffices to prove that jP"’ (dl) f%(1) converges to
jP’ (db) f4(1) for “U with finite bases converging to ¥ accordingly to the
order by inclusion.”

We can express the integral {4 o, - as a finite linear combination of
products of correlations of the form p§ ,, ,(6,) p5 1,1)(02), where 6, 0, are
families of contours y for which |I'| <k, and I'n Az # ¢&. [Notice that
well, 0,,0,) is constant on the set of 8,, 8, such that U{I'n A,|yeb,,
g=1,2} is given.]

It follows from (i)(b) that these correlations converge for U
converging to V uniformly in 8, 6, because d(A .., U= V) converges to
infinity for U converging to ¥ and thus f% (1) converges to f%(0) uniformly
in U.

We thus have

[ Patan) £51) convergesto [ Py(an) £3(1) (6.6)

uniformly in cylinders U with finite bases.

Similarly, for 1’ converging to | we have f* “(1") converges to f%(I)
because d(Ag, ., U,(I')+U,(I)) converges to infinity and we can use
(1)(b).

Hence f% is continuous (notice that it is not cylindrical because the
probabilities P, , ,, depend on the change of I far from A) and

[ P2(dn) £44(1)  converges to [ Prcan) i) (6.7)

The properties (6.6), (6.7) imply that | P7(dl) f%(1) converges to
§ PL(d) F3AD).
This finishes the proof of Theorem 2.
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6.3. Proof of Theorem 1

We shall prove the extremality (i). The other statements (ii)-(iv) are
an immediate consequence of Theorem 2.

Repeating the proof of Corollary 3.1 from Ref 4b, we see that the
extremality of the Gibbs state u from Theorem 1 follows from the following
result.

Proposition 6.2. Under the assumptions of Theorem 1, there exist
constants x>0 and A >0 such that

[ @102) — (@) Wl@r) < A4, [4,] exp[ —xfd(4,, 45)]

whenever ¢,, ¢, are A,, A, cylinder functions such that [¢ <1,
@, <1, respectively.

This is (a slightly reformulated version of) Proposition 3.2 from
Ref. 4b. While we shall in principle follow its proof, we first have to fill a
gap in it. Namely, the proof in Ref 4b does not apply, eg, if
n(4)nn{A,)# & and this is exactly the case used in the proof of
Corollary 3.1 stating extremality.

The gap may be filled with help of an estimate on the height of the
interface proved in Ref. 12 and also in Ref. 4:

Lemma 6.3. Under the assumptions of Theorem !, there exist
constants & >0 and K> oo such that for all ie I, one has

u({x|h(l(x)) > N}) < K exp(—3pN)
where A,(1)=sup{d(}, I,))|jel, n(j)2i}.

Proof. Denoting by W (1) the set of all standard walls in | encircling
the point i,

W)= {weW(l)|ieInt,(n(W)) v r(W)}
we clearly have

RS Y IWI=WA)]

we Wi(l)

Denoting further by #7 the set of all admissible families V of standard
walls such that every wall weV encircles i (ielnt,(n(W))un(W)), we
have for the expectation with respect to the measure x and any &> 0:
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E(exp[aph(1)])
< E(exp[aB | WA D)

< ) [lexp(aBlIVIN p7(V)

Vew?

< ) expl—(o—tlog2—ap)|VI]

Vew?

<[] {14— Y exp[—(a')—tlog2—o'cﬁ)|W|]}
1 W:{w}ew?
Wl zn

n=

The last expression is finite (< K) for & small enough. Hence, according to
Chebyshev’s inequality,

p({lA()=N})
= u({0]exp[aph(1)] >exp(aBN)})
< Kexp(—apN)

Proof of Proposition 6.2. Consider 6, N>0 and denote
D,=(A)s L)y, E,=7n(D,), a=1, 2, where (A4,); is the é-neighborhood
of A, and (I,)y is the N-neighborhood of I,. Note that d(E,, F,)>
d(A, A,)—2N —26. With the help of (2.1) one gets

(@1 9,) — (o) u(e,)l

=\fPfuﬁ)uwnwzw)—Jzwwdm;wwdn)ijuw)uwu|m\
<[ PZ(d0)[1(0,0211) = #(0111) iw(9,11)

] P20 o 1) (1)~ [ P21 D [ P71t 1)
(6.8)

We evaluate the first term by taking into account (6.3) and
Proposition (3.4)(iii) by

K|4,0 45] [l:ll ll@2] expl —ad(4,, 4,)]
In the second term we restrict the integrations to [ corresponding to

Ved={Vew?|sup{|h(l(V)) ien((4,),0 (4,),} <N} A F
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where
F={Vew?*|lweV, [n(W)ulnt, e(W)]In[E,VE,]#
implies |W| <k}
Denoting
V,={weV|(n(W)ulnt, n(W))nE,# }
and

&={Ve&|V,=V}, F={VeF|V,=V}), a=12

a

note that for every V e & we have
if w,eV,,a=12, then d=n(W,),n(W,))=dE,, E,)—2k
if weWV\(V,uV,), then dI(V)na (W), 4,0A4,)=0
Note, moreover, that

PH(WN\E) < (4,0 4,)] 6" - Kexp(—apN)

799

(6.9)

(6.10)

(6.11)

and that for every Ve ¢, according to Proposition 3.4(iii) and (6.9), we

have
1@ UV)) = (o | WV <K|A4,] @l e,  a=1,2

Hence, we have for the second term in (6.8) an estimate

3|m(A4, 0 4,)] 0°K exp(—apN)+2K(4,] 9]l + 4] |@2) exp(—ad)

+)L PZ(dD) uley | IV 4(1))) ple 1 1(V (1))

S RCOPTAINRON S CTOENTAAE))

Again using (6.11), we estimate the last term by

3m(A; U A,)| 8*K exp(—aBN)

+ 2 e IV)) w@a [ IV ) PUEeF U =V, Uy=V,})

Vie &
Voe F3

—P{UeZ|U,=V ) PP{UeF|U,=V,})
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Realizing that the inequality (i)(c) from Theorem 2 can be generalized in a
similar way as when the estimate (ii)(c) from Proposition 3.4 was extended
to (ii)(c’) in its proof, we get for the last sum the estimate

3ol leall exp{—so[d(E,, E;) —2k]}

7. PROOF OF THEOREM 3
Theorem 3 follows from:

Proposition 7.1. Under the assumptions of Theorem 3, we have
for any cylinder V= V', with finite base

Z(U| y"?; BH)
Z(Ul(lo)\(lo)zelxl) Z(Uz(lo)\(lo)Rlxz)

== Y o n+ Y PYC)

lim fin cyl log
U, Vg

A< (o)r CedNAV))
AnV#D

suppCn(V ~
g=1,2 CEJ(ZI lsuppcl

supp Cn (I~ Vp) # &

where |A] <[e ?/(1 —e~®)] |0B| with @ from Theorem 2, and 4 from
Theorem 3 equal to

)
— V’T(D
4= L VO
a(C)ai
: (0)
@T
Lk YO%mpo

supp Cnr(i) # &S

The y**7 were introduced in Proposition 5.3 and @7 in Section 3.
Proof. According to Lemmas 4.2, 4.3, and 4.9, we get
Z(U| y*? BH)
Z(U(Io\(Ig) | x") Z(U(Ig)\(Ip) g | x7)
=log Z(A(V)| ¥")

lim fin cyl log
u- v

. N(U| y; H)
lim fi 11
e I ANT AN AT AN AN
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The second term is, according to Lemmas 4.3 and 3.1

hmﬁncyl{p(ﬂH)lUﬂ‘i"ﬁ Z @y )—————iAmUR!
A= UrC lAl
cCnU
“Z ) ‘PT(C)[ \mc‘ « — p(BH) o0 Ul — BE - y,(1o)
q=1 Cexs
Ctl

> A R 0
el L T e at ZEULANIS!

A< [Uy(Io)\({o)r]¢

+log 0((Ur),(Io) | x7; ﬂH):I}

Taking into account that fe(x?)= p(®,)— p(fH) for g=1,2 and using
Proposition 3.2(ii) combined with Theorem B.1, we get for this term

imfnest {p| ¥ 0,0 A0

U~ v A= U

2 o AN (Ug) (Do)l
-2 > P 4(x )T-Eromuk(“o)]

q=1 A< U\

2 [supp C N (Ug),|
+Y [ DI (o) p‘fsupp@'“ ‘
g=1 Ce)f;

supp € n ((Ur)q)© # &

CnU
Cexd |supp C|
C.9q
z [supp C n (Vg),l
= - (y)+ dI(C) 4
f ACZ(IO)R Paly) El cg}gl ! [supp C|
AnV=g supp € (Jo VR) # &
2 [supp € N Vgl
— N(C)————
qgl Cesz,‘ o tsupp C|
C.q

supp Cn (lon VR) # &

Using Proposition 5.3 for the expansion of log Z(A(V)|¢") and taking the
third term above for 4, we finally get the statement of the proposition. The
indicated form of A4 then follows in a straightforward manner.
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APPENDIX A. THE GEOMETRICAL STRUCTURE OF
INTERFACES

Our aim in this Appendix is to prove Lemmas 4.1, 4.8, and 2.2. Most
methods and formulations are modifications of geometrical lemmas from
Ref. 3 or Ref. 16.

We suppose v 3, though in some lemmas it is enough to suppose
v>=2, as will be indicated.

We begin by recalling a useful lemma,*® which, among other things,
implies that contours are g-contours for some g€ {1,.., r} as mentioned in
Section 2.2. It will serve several times in the analysis of interfaces.

Lemma A.1. Let v=2 and M<Z' and Z"\M be R-connected
(R=1,2,.). Then 0M = {ie M|d(i, Z\M) =1} is R-connected.

For the reader’s convenience we reproduce here the proof from
Ref. 16:
Put

A= {xeR"|d(x, M)<R/2+1/3)
B={xeR'|d(x,Z"\M)< R/2+1/3}

According to Ref. 17, Chapter 8, §52, II, Theorem 2 and Ref. 17, Chapter 9,
§59, 11, Theorem 11, the intersection 4B is connected. We choose
Xy, X, in A0 B such that p(x;, x;,,)<1/3, p(a, x;)<R/2+1/3, and
p(b, x,) < R/2+1/3 whenever a, be M. Let us find y;edM, j=2,.,p—1,
such that p(y,, x;) < R/2+1/3. The sequence a, y,,.., y,_, b proves that
a, b belong to the same (and thus the only) R-component of M.

It is often useful to realize that the components of the complement of
an R-connected set always satisfy the assumptions of Lemma A.1.

Proof of Lemma 4.7. 1t is obvious that there are at least one and at
most two infinite components of B(x). Let us suppose that the complement
of one of those infinite components (say I) of B(x) has a unique infinite
R-component (say I¢). According to Lemma A.1, we know that oI¢ is
R-connected. Since 81, N B(x) =, we have

Xore, = X3,

for some g€ {1,.., r}, but this is obviously impossible.

To prove the other lemmas, we need some observations about ceilings
and walls. Sometimes we shall deal with I, [and its subsets of the form
S=n"YS)n1I,] as with Z*~' (and its subsets) in an obvious sense.
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Lemma A.2. Let v>2 and let [ be the support of an interface.

(a) Let D be a ceiling column. Then one has A(D) = h(n (i) n I) for
any iel such that d(i, D)< R. In particular, the ceiling columns that are
contained in the same ceiling C have the same height h(C).

(b) Let D be a conected subset of I, such that n '(D)nI is
contained in the union of all ceilings. Then 7 (D)~ I is contained in a
sole ceiling.

(c) Let C be a ceiling of I, and G be a component of I,\z(C) in I,.
Then 7 ~(G) I is connected.

Proof:

(a) Let D be a ceiling column. The assertion follows from the fact
that the heighest and the lowest hypercubes B such that Bazn (D)=
Bn D +# (& are bad ones.

(b) Due to (a), all ceiling columns from = (D)1 are of the same
height and thus belong to the same ceiling.

(¢) The case v=2 is simple and we omit the proof Let v>2. Let
i, jen ' (G)n T and ky,.., k,€1 be such that k, =i, k,=j, p(k;, k; )< 1.
Let /, be the smallest index with k, e C and /, be the largest index
such that k, € C. Then k,_, and k, ,, are elements of n~'(d(n(G))) N 1.
Lemma A.1 implies that dn(G)n I, is connected in [, and the columns
n (k) n I are of the same height by (a) for all k€ dn(G) N I,.

Llemma A.3. (a) Let w= (W, xy,) be a wall of an interface
I =, x;). Then

nHieZ’|di, W)<1}n | W=W
W e W(l)
(b) Let G be any component of I,\n(W) in I,. Then z = H0G nI,)n 1

is contained in a sole ceiling C and 7~ Y(i)~ T is a column of height #{C)
whenever i€ 0G° N I,.

Proof:

(a) The set Go=n({ieZ”|d(i, W)<1}) is finite and connected in /.
According to Definition 2.2 and Lemma A.2(c), the set n~'(G)n I is also
finite and connected. Let us consider any ceiling C for which
1(C)n Gy # . Lemma A.2(c) implies that 7 ~'(G,) n I is connected, where
G, is the component of I,\n(C) containing #(W). Removing all ceilings
that intersect G,, we get a connected subset of 7 ~*(G,) n I which contains
W and does not intersect any ceiling of I. This implies (Definition 2.3) that
the resulting set is identical to W.
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(b) The set n(W) is conected; thus, Lemma A.1 applies to I\G in [,
and 6Gn 1, is connected. Lemma A.3(a) implies that n (8GN 1)) 1T is
contained in the union of all ceilings and Lemma A.2(b) implies that it is
contained in an only ceiling. The other assertion follows from Lemma
A2(a).

Recall that v> 2 if not specified otherwise!

Proof of Lemma 2.2:

(a) We use Lemma A.3(b) for the only infinite component G of the
complement of the support W of w. We may denote the height of the
ceiling from A.3(b) by 4(W) and show that T'_,,,w is standard, applying
Lemma A.3(b) to the other components of n(W)° in I,.

(b) Lemma A.3(a) implies that W(l)e #"°. Let Ve #™* We know
that there are finite external walls in V by the definition of #7°2 Using
Lemma A.3, we construct easily an interface having the external wall E(V)
of V as its only walls. The construction of (V) can be completed by induc-
tion, continuing with external walls of V\[F(V), etc. It is easy to realize that
the construction gives the only possible interface with prescribed walls V.

Part (a) of Lemma 4.8 is proved by the following:
Lemma A.4. Let a be an aggregate of an admissible tripiet T. Then
! (8( (\ Ext, W)) N I(T)
w e E(ag)
is contained in one ceiling of [(T).

Proof. Let G be the only infinite component of

(U)o U )

Then (8G) NI, is connected in I, and = (3G n Iy) nI(T) is contained in
one ceiling, by Lemma A.3(b). The set

F=[U&G)u6G]m<{j Emhwj

wE ag

is connected and Fnn(W)= ¢ for every we T,. Here n {(F)nI(T) is
contained in one ceiling the statement folows, since

F:@( N Enhwj

w € E(ag)
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Proof of Lemma 4.8(b) may be carried out in a similar way to that of
Lemma 2.2(b), considering whole aggregates instead of separate walls.

Remark. We could prove elementarily that the number of standard
aggregates a with ie 4 and |al =n is less than ¢" for some constant ¢
depending on v only. This estimate would yield an alternate proof of
Lemma 5.2.

APPENDIX B. CONTOUR MODELS

We summarize here some rather standard'®'®) statements about con-
tour (polymer) models. Since we shall use them in a situation where the
role of contours is played by more complicated objects (namely, aggregates
of walls and clusters; cf. Section4.1), it is useful to introduce contour
models in a more abstract form. In stating Theorem B.1, we closely follow
Ref. 20.

Let us consider a countable set [, the elements of which will be called
contours. Let 1=K x I be a reflexive and symmetric relation; pairs
(yy,»75) €1 (denoted also y, 1y,) will be called incompatible, while they will
be called compatible if (y,.7y,) ¢ By A °°(# /) we denote the family of
(finite) sets 0 = KK consisting of mutually compatible contours. Considering
a contour functional @: K — C, we denote @(J)=]],., P(y) for each
ded’, d(Z)=1 If Lc K is a finite subset, the partition function Z(1; &)
is defined by

2(Ld)= Y D)

de A L)

where A °(L)={de #*°, d = L}. The correlation function p;(d; @) of 0 in
L is defined by

pm;@):[ 5 ¢(a')]/f(m;¢)
)

30 0 e HO(L

Note that p,(d; @) =0 whenever d ¢ L. We often omit @ in Z(L; @) and
p1(0; @). The tacit assumption Z (L) # 0 needed for the definition of p, will
be always true under the hypothesis of Theorem B.1. We denote by o#™/(L)
the family of all finite subsets of L < i, #/= #"/(K). If Ce &/, we denote
C*=K\C, |C] the number of contours in C, and write C 1y whenever ye K
and there is y'eC such that y1y". We call Ce ¥/ a cluster if it is not
decomposable into two nonempty sets, C=C,; nC,, such that every pair
v,€Cy, v, € C, is compatible (ie., such that C, x C, ni1= ¢¥). The set of all
clusters will be denoted #°.
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If .4 is a contractible set of contour functionals and Z(L; ®)#0 for
every @ € ./ and every e 7, as is the case in the following theorem, then
there is a unique continuous branch of logarithm for which
log #(L; ®=0)=0 [N.B.: Z(L;®=0)=1 for every Le #/]. We always
take log Z(L; @) in this sense

Theorem B.1. Let functions a: K — [0, «0), I: K- [0, «0), and &:
i — C and a number w =0 be such that

Y expla(y)+ wl(y)] 19G")| < a(y) (B1)

yiyiey
for each y e K. Then Z(L; @) +#£0 for each finite | = K and:
(i) There exists a unique function @”: #/ - C such that
logZ(L)= ) &7(C) (B2)
Cex /(L)

for each finite L = K. Moreover, the function &7 is given by the formula

®T(C)= Y (—1)-18l1og Z(B) (B3)
BeC
2 127(C)] e D <a(y) (B4)

for each ye K and with {(C)<3,_ ¢ /(7). We have ®T(C)=0 whenever
Cexe.

(ii) For every de # ' there exists a unique function 4,: 4/ — C
such that

pu(d)= ). 4,(C) (BS)

Cetl

for each finite | < K. Moreover,

45(C)= 3, (—D)IF1® pg(2) (B6)

BcC

for each finite C =« K and
Y 145(C)| e ® < 4P+ 1@ ()] (B7)

with a(0) =3, ., a(y). We have 4 () =1 and 4 4(C)=0 for C# . The
function 4, satisfies a factorization property:

45(C) =4,(C1) 4,,(C,) (B8)
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whenever 0=0,u00d,, C=C,uC,, and all contours from C,ud, are
compatible with those from C, U d,.

Remark. When referring to above theorem we shall also use the
following straightforward generalizations of the assertions (i) and (ii):

(i) If BcK is finite and L(B)={yeK|y:1B}, then Z(L(B))
converges and

log Z(LB)= Y  &7(C) (B2')

CexNL(B))

(ii') If Lo K is arbitrary, the limit limg_ /¢ ., pr(0)=p,(0) exists
and again

pu(@)= Y 4,(C) (B5")
Cal
Proof of Theorem. Part (i) is proven in Ref. 16. We can also follow
the proof here by proving that 4, defined by (B6) satisfies (B5), that it is
unique, and that it satisfies the factorization property. To prove the
estimate (B7) we use (B6), the definition of p,(d), and (B2) to show (for
0cC)

44C)= Y (—1)e-im aﬁ(a)exp[—

BeC
B>d D

@T(D)}

—o@) ¥ (-)9-m Y - Y [[[-97D)]

BeC Dy =B /=1
Bod Dy19,.., Dpid
o | n
=0@) Y - Y (=pE-m Y [] [-27(D)]
n:On' B:6cB<C Di,... Dp=B =1

Dy18,... Dpté

o9}

—o@ S Y [1[-97D)]

n=0 D,.,DycC I=1
D1 8,.., Dyt 0
(UDpwé=C

In the last equality we used the fact that

Z (—1)/Ci-iBl = (1)U DI = ()

B:(UD)udécBeC

822/50/3-4-22
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whenever (| D;)ud g C. Thus,

3 144(C)] e©

<\¢(@§ XX [T [197(D)) er©1] e

e’ Dy,.,D,=C I=1
Dllﬁ ..... Dy 6
(UDpwo=C

< |D(d)) £®1(0) expl: Z I‘DT([D)| ewl(D):l

Do

< |(p(a)i ew/(a) + a(d)

according to (B4).

A particular situation where one can apply the above theorem
concerns contour models used in the Pirogov—Sinai theory. Contours y are
then connected subsets supp y of a lattice Z* together with a configuration
on it (see Definition 2.1), and one considers for K the set K, of all
g-contours with a fixed boundary condition x4 In this case we also use the
notation X#°¢°, A/, A, etc. Two contours y,,7, are incompatible if
d(supp v, supp ;) < 1. If 0e 273", the set 6(0) of external contours of @ is
the set 0(0)={yed|yed, 7#y implies suppy<Extf}. If V=2’ let us
introduce K (V)= {ye, |suppy == V}. Whenever V' <Z" is finite, we
denote Z (V)= Z(K (V)), pq,V(6)=qu(,,)(6) and by Z,(V|®,b) the
partition function of the contour model @ with parameter b >0 defined as

U IntyD $(0) (B9)

ye0(3)

ZV\o,b)= 3, exp<
aeff,"(V)
If V<Z' (not necessarily finite), we denote by X (V) the set
{dex|0cK,(V)} and by X8, V) the set {0e (V)| 0>0}
whenever de " °(V). Let us note that the set #"°(V) may be considered
as a measurable subspace of a compact metric space {0, 1 }*s endowed with
its Borel g-algebra. Finally, by #"2(V) we denote the set of admissible
de A (V) ie, those 0 € A (V) for which either 0(0) is nonempty or J1is
empty. Notice that 0(0) # ¢ implies that any element of ¢ is external or is
contained in the interior of some external contour.
Let us denote by |y| the number of lattice sites in supp y. It is easy to
show that there exists a constant ¢ such that

[{veK,lIsuppy>i [y =n}| <c” (B10)

for every ie Z'. It is clear that we can put ¢ =S| c(v), where ¢(v)" is an
upper bound on the number of connected subsets of cardinality n that
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contain a fixed site Z". It follows easily from the existence of a path that
covers a connected graph and utilizes each its edge at most twice®® that
one may take c(v)=(3"—1)**"~1, Taking a(y)={(y)=|y| [this is not an
optimal choice; considering a(y)=a - |y| and optimizing in a, the estimates
could be improved] and noticing that supports of “shortest” contour
contain (2R + 1)" lattice sites, we have the following:

Theorem B.2. Let |®(y)|<e " for each yel§, with t>1+
log(2c¢). Then:

(i), (ii) The statements (i), (ii) of Theorem B.1 are fulfilled with the
estimates (B4) and (B7) replaced by

Y 127(Cler <1 (e ZY) (B4)
Cexy
suppCs/
whenever
viog(2R+1)
<t— it ) S
w<T [1+log(2c)+ (2R+1)V]

(here supp C={J, _csuppy and ||C| =3, ¢ |7]), and by
Y 14(C)] e® 1€l < e+ DIl @(g) (B7")

whenever w <7—[1+1log(2¢)].

(iii) Whenever V= Z" (in particular ¥V'=2") and de X/ (V), the
limit over finite U < ¥V, ordered by inclusion, of p, ,(0) exists

lim p, ,(0)=p, 0)
Uy

If @(y)=>0 for every yelK,, there exists a unique o-additive probability
measure P, on A °(V) such that

Pq, V(jxc;o(aa V)) = pq, V(a)
for each 0 e " ;°(V). Moreover, P, (A% V))=1and P, , is the weak limit

P, .= lim P
i [ g

(iv) Assuming furter that & is translation-invariant, one has for each
finite V< Z¥

supp Cn V]
g 2 =p@) Vi~ T ore)BPRE
oS supp €

supp C Ve ¥
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with
®7(C)
P)= _ Bi1
p(P) CGZX? supp C| (B11)
suppCai
and
llog Z(V) — p(@)| V]| < {exp[ —w(2R+1)"]} |0V (B12)
whenever
log(2R+ 1
er-—[l+log(2c)+v—(02gI§———1—lf)—v—)]

Proof (cf. Ref. 15). It is straightforward to verify (Bl1) if
72 1+1og(2¢). Then (i) and (ii) follow directly from Theorem B.1.

The existence of lim,, , , p, (0) in (iil) is implied with the help of
(B5) and (B7). [ This assertion is actually contained in (ii’).] To introduce
a contour probability measure on % °(V), we denote by .#; the (closed)
Borel set .#,=A";°(0, V) and introduce the probability P, , on X °(V)
[supported by " c"( U)] by
P\ ol0)=Zr gy o)

Xor gy m

Any cylinder set is a finite, disjoint union of sets of the form .4, ;=
{0eA (V)| nMc o} with Me X /(V) and de A °(M). Since

Ma_‘%ﬁ\\ U
v e M\@

and

ﬂ Jﬂ@u{y}zﬂaua
yed

for 0 U J compatible and .#, 5= J otherwise, one has

P( My, ;)= P(My)— P (U J/fau{y})

=P(y)— Y (=1)0 P( My, 5)
Je M\S
LEX%]

= ¥ (=D)PP(A,,5)

J=M\d

for any probability P on #"°(V).
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Thus, it suffices to verify the convergence P, ,— P, , only on ./ ,:
Py oy = 0, A0) = Py (0) = Py M),

To verify that P, (A2(V))=1, we refer to the usual proof (cf
Proposition 2.2 in Ref. 2). Indeed, note first that considering a half-line
parallel to a fixed coordinate axis of Z' and starting at a fixed site ie Z°,
there are fewer than » possibilities for its first intersection with a contour y
encircling the site ¢ such that |y] =# and thus

P, ({0lielnty, |y|=n,yed})
<nP, ({0liesuppy, [y|=n,v€d}) (B13)

(cf. proof of Lemma 2.7 in Ref. 2).
Hence, the probability that a site i is encircled by at least n contours
may be bounded by

Y P, {0lielnty, |y|=m,yed})

m=n

< mc™ exp(—1tm)

n

276 expl ) exp{ — [t —log(2c)]n}
—Tml=
Y ¢ eApLTT 1 —exp{—[r—log(2¢c)]}
since the length of the nth contour encircling 7 is at least #n and m < 2™

Then the probability that the site 7 is encircled by an infinite number of
contours is bounded by

_ exp{—[tr—log(2c)]n}
nlinc}:o 1 ~exp{~—[r—log2c)]}

<

3 3
1 8 1 D8

Finally, the statement (iv) is proved by a direct application of (B2) and
(B4').
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